
Project: Maverick Token
Website: mav.xyz
Platform: Ethereum
Language: Solidity
Date: May 8th, 2024

https://www.mav.xyz

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Business Risk Analysis …..…………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Maverick Token
smart contract from mav.xyz was audited extensively. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 8th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The MaverickToken contract leverages the LayerZero OFT framework to create an

omni chain token named "Maverick Token" with the symbol "MAV".

● The contract initializes with an optional initial mint to a specified address. Key

functionalities include interface support, token minting, and burning, with omni chain

capabilities provided by Layer Zeros OFT framework.

Audit scope

Name Code Review and Security Analysis Report for
Maverick Token Smart Contract

Platform Ethereum

Language Solidity

File MaverickToken.sol

Smart Contract Code 0x7448c7456a97769F6cD04F1E83A4a23cCdC46aBD

Audit Date May 8th, 2024

https://etherscan.io/token/0x7448c7456a97769F6cD04F1E83A4a23cCdC46aBD#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Maverick Token

● Symbol: MAV

● Decimals: 18

YES, This is valid.

Ownership control:
● The owner can pause/unpause the contract state.

● Burn amount.

● Updates account to a frozen state.

● Mint a new token.

● The current owner can transfer the ownership.

● The new owner accepts the ownership transfer.

YES, This is valid.
We suggest renouncing
ownership once the
ownership functions are
not needed. This is to
make the smart contract
100% decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 2 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? No

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Maverick Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Maverick Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Maverick Token smart contract code in the form of an Etherscan web

link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x7448c7456a97769F6cD04F1E83A4a23cCdC46aBD#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 supportsInterface read Passed No Issue
3 token read Passed No Issue
4 circulatingSupply read Passed No Issue
5 _debitFrom internal Passed No Issue
6 _creditTo internal Passed No Issue
7 supportsInterface read Passed No Issue
8 estimateSendFee read Passed No Issue
9 sendFrom write Passed No Issue
10 setUseCustomAdapterParams write Centralized Ownership

and Privileges
Management

Refer Audit
Findings

11 _nonblockingLzReceive internal Passed No Issue
12 _send internal Passed No Issue
13 _sendAck internal Passed No Issue
14 _checkAdapterParams internal Passed No Issue
15 _debitFrom internal Passed No Issue
16 _creditTo internal Passed No Issue
17 _blockingLzReceive internal Passed No Issue
18 _storeFailedMessage internal Passed No Issue
19 nonblockingLzReceive write Passed No Issue
20 _nonblockingLzReceive internal Passed No Issue
21 retryMessage write Passed No Issue
22 lzReceive write Passed No Issue
23 _blockingLzReceive internal Passed No Issue
24 _lzSend internal Passed No Issue
25 _checkGasLimit internal Passed No Issue
26 _getGasLimit internal Passed No Issue
27 _checkPayloadSize internal Passed No Issue
28 getConfig external Passed No Issue
29 setConfig external access only Owner No Issue
30 setSendVersion external Centralized Ownership

and Privileges
Management

Refer Audit
Findings

31 setReceiveVersion external Centralized Ownership
and Privileges
Management

Refer Audit
Findings

32 forceResumeReceive external Centralized Ownership
and Privileges
Management

Refer Audit
Findings

33 setTrustedRemote external access only Owner No Issue
34 setTrustedRemoteAddress external access only Owner No Issue
35 getTrustedRemoteAddress external Passed No Issue

36 setPrecrime external Centralized Ownership
and Privileges
Management

Refer Audit
Findings

37 setMinDstGas external Centralized Ownership
and Privileges
Management

Refer Audit
Findings

38 setPayloadSizeLimit external Centralized Ownership
and Privileges
Management

Refer Audit
Findings

39 isTrustedRemote external Passed No Issue
40 name read Passed No Issue
41 symbol read Passed No Issue
42 decimals read Passed No Issue
43 totalSupply read Passed No Issue
44 balanceOf read Passed No Issue
45 transfer write Passed No Issue
46 allowance read Passed No Issue
47 approve write Passed No Issue
48 transferFrom write Passed No Issue
49 increaseAllowance write Passed No Issue
50 decreaseAllowance write Passed No Issue
51 _transfer internal Passed No Issue
52 _mint internal Passed No Issue
53 _burn internal Passed No Issue
54 _approve internal Passed No Issue
55 _spendAllowance internal Passed No Issue
56 _beforeTokenTransfer internal Passed No Issue
57 _afterTokenTransfer internal Passed No Issue
58 onlyOwner modifier Passed No Issue
59 owner read Passed No Issue
60 _checkOwner internal Passed No Issue
61 renounceOwnership write access only Owner No Issue
62 transferOwnership write access only Owner No Issue
63 _transferOwnership internal Passed No Issue
64 supportsInterface read Passed No Issue
65 _msgSender internal Passed No Issue
66 _msgData internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best Practices:
(1) Consistent Pragma Solidity Version Usage: MaverickToken.sol

Detected different Solidity versions are used.

Resolution: Use one Solidity version.

(2) Centralized Ownership and Privileges Management:

In the contract, only the owner has owner authority on the following functions:

LzApp.sol
● setSendVersion

● setReceiveVersion

● forceResumeReceive

● setTrustedRemote

● setPrecrime

● setMinDstGas

● setPayloadSizeLimit

OFTCore.sol
● setUseCustomAdapterParams

Resolution: We suggest carefully managing the onlyOwner private key to avoid any

potential risks of being hacked. In general, we strongly recommend centralized privileges

or roles in the protocol be improved via a decentralized mechanism or

smart-contract-based accounts with enhanced security practices.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

OFTCore.sol
● setUseCustomAdapterParams: The owner can update the custom adapter

parameter value.

●

LzApp.sol
● lzReceive: The owner can update src chainId and src address.

● setConfig: The owner can update the generic config for the LayerZero user

Application.

● setSendVersion: The owner can update the seder version.

● setReceiveVersion: The owner can update the receiver version.

● forceResumeReceive: The owner can forcefully resume the receiver.

● setTrustedRemote: The owner can set the trusted path for the cross-chain

communication.

● setTrustedRemoteAddress: The owner can update trusted remote addresses.

● setPrecrime: The owner can update the precrime address.

● setMinDstGas: The owner can update the minimum gas value.

● setPayloadSizeLimit: The owner can update the payload size limit.

Ownable.sol
● renounce Ownership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: The current owner can transfer ownership of the contract to a

new account.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 2 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://etherscan.io/token/0x7448c7456a97769F6cD04F1E83A4a23cCdC46aBD#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's website to get a high-level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Maverick Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> MaverickToken.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

MaverickToken.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

MaverickToken.sol

Compiler version 0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:2
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:107
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:176
Variable "mlengthmod" is unused
Pos: 21:287
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:326
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:385
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:396
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:407
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:418
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:429
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:440
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:451
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:462
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:473
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:483
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:533
Explicitly mark visibility of state
Pos: 5:597
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:629
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:681
Provide an error message for require
Pos: 9:716
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:718
Code contains empty blocks
Pos: 1:900

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:931
Error message for require is too long
Pos: 9:973
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1004
Error message for require is too long
Pos: 9:1150
Error message for require is too long
Pos: 9:1173
Error message for require is too long
Pos: 9:1174
Error message for require is too long
Pos: 9:1179
Error message for require is too long
Pos: 9:1228
Error message for require is too long
Pos: 9:1233
Error message for require is too long
Pos: 9:1259
Error message for require is too long
Pos: 9:1260
Code contains empty blocks
Pos: 94:1298
Code contains empty blocks
Pos: 93:1314
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1334
Error message for require is too long
Pos: 9:1344
Error message for require is too long
Pos: 9:1354
Check result of "send" call
Pos: 9:1356
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:1368
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1447
Code contains empty blocks
Pos: 53:1447
Error message for require is too long
Pos: 9:1470
Error message for require is too long
Pos: 9:1480
Error message for require is too long
Pos: 9:1481
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1501
Code contains empty blocks
Pos: 68:1501
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:1524
Error message for require is too long
Pos: 13:1559

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1570
Code contains empty blocks
Pos: 125:1570
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:1599

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

