
Project: OKB Token
Website: okx.com
Platform: Ethereum
Language: Solidity
Date: March 5th, 2024

https://www.okx.com/


Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 6

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..………………………………………………………………………..9

Business Risk Analysis …..…………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 22

Our Methodology ………………………………………………………………………………... 23

Disclaimers ………………………………………………………………………………………. 25

Appendix

● Code Flow Diagram ……………………………………………………………………... 26

● Slither Results Log ………………………………………………………………………. 27

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf


THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
As part of EtherAuthority’s community smart contract audit initiatives, the OKB Token
smart contract from okx.com was audited extensively. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on March 5th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● This Solidity contract seems to be an implementation of a token contract for OKB

(the cryptocurrency of OKEx exchange) with functionalities like transferring tokens,

pausing/unpausing transfers, approving transfers, managing allowances,

freezing/unfreezing addresses, and adjusting token supply.

● Here's a breakdown of the key components and functionalities:

○ SafeMath Library: This library is used for arithmetic operations to prevent

overflows and underflows.

○ Contract Variables:
■ balances: Mapping to store the balance of each address.

■ totalSupply: Total supply of the token.
■ name, symbol, decimals: Metadata of the token.
■ _allowed: Mapping to track allowances for each address.
■ owner: Address of the contract owner.
■ paused: Boolean flag to control whether transfers are paused or not.
■ lawEnforcementRole: Address with special permissions.
■ frozen: Mapping to track frozen addresses.
■ supplyController: Address controlling token supply.

○ Events: Events are used to log significant contract actions.
○ Modifiers:

■ onlyOwner: Restricts functions to be called only by the contract

owner.



■ whenNotPaused: Restricts functions to be called only when transfers

are not paused.

■ onlyLawEnforcementRole: Restricts functions to be called only by

the law enforcement role.

■ onlySupplyController: Restricts functions to be called only by the

supply controller.

○ Functions:
■ initialize(): Initializes the contract.
■ totalSupply(), balanceOf(), allowance(): Getters for total supply,

balance of an address, and allowance of spender.

■ transfer(), transferFrom(): Transfers tokens from one address to

another.

■ approve(), increaseAllowance(), decreaseAllowance(): Approves

spender to spend tokens on behalf of the owner.

■ pause(), unpause(): Pauses/unpauses transfers.
■ setLawEnforcementRole(), wipeFrozenAddress(), freeze(),

unfreeze(), : Manage frozen addresses by the law enforcement role.

■ setSupplyController(), increaseSupply(), decreaseSupply():
Manage token supply.

● The OKBImplementation contract is a Pausable ERC20 token with Burn and Mint

controlled by a central supply controller.

● This contract also includes external methods for setting a new implementation

contract for the proxy.

● OKB Token smart contracts offer various functions like pause/unpause contracts

and freeze/unfreeze address balances for transferring.

● Overall, this contract provides functionalities for managing a token ecosystem

including ownership, transfers, allowances, freezing addresses, and controlling

token supply, with certain permissions delegated to specific roles.



Audit scope

Name Code Review and Security Analysis Report for OKB
Token Smart Contract

Platform Ethereum

File OKBImplementation.sol

Smart Contract Code 0x5dba7dfcdbfb8812d30fdd99d9441f8b7a605621

Audit Date March 5th, 2024

https://etherscan.io/address/0x5dba7dfcdbfb8812d30fdd99d9441f8b7a605621#code


Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: OKB

● Symbol: OKB

● Decimals: 18

YES, This is valid.

Ownership Control:

● Allows the current owner to transfer control of the contract

to a new owner.

● Pause / Unpause contract.

● Freezes or unfreezes an address balance, allowing

transfer by the law enforcement role or owner.

● Wipes frozen address can be set by the law enforcement

role or owner.

● Sets a new supply controller addressed by the supply

controller or owner.

● Increases or decreases the total supply by minting the

specified number of tokens into the supply controller's

account.

YES, This is valid.
We suggest
renouncing
ownership once the
ownership
functions are not
needed. This is to
make the smart
contract 100%
decentralized.



Audit Summary

According to the standard audit assessment, the Customer`s solidity smart contracts are
“Poor Secured”. Also, this contract contains owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 1 critical, 0 high, 0 medium, 1 low, and 9 very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Yes

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Yes

Blacklist Check No

Can Mint? Yes

Is it Proxy? Yes

Can Take Ownership? Not detected

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED



Code Quality
This audit scope has 1 smart contract file. Smart contracts contain Libraries, Smart

contracts, inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in OKB Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the OKB Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an OKB Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that is

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x75231f58b43240c9718dd58b4967c5114342a86c#code


AS-IS overview

OKb.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initialize write Passed No Issue
3 totalSupply read Passed No Issue
4 transfer write Passed No Issue
5 balanceOf read Gas Optimization Refer Audit

Findings
6 transferFrom write Gas estimation failed,

Gas Optimization
Refer Audit
Findings

7 approve write Gas Optimization Refer Audit
Findings

8 _approve internal Passed No Issue
9 allowance read Gas Optimization Refer Audit

Findings
10 increaseAllowance write Gas estimation failed,

Gas Optimization
Refer Audit
Findings

11 decreaseAllowance write Gas estimation failed,
Gas Optimization

Refer Audit
Findings

12 onlyOwner modifier Passed No Issue
13 transferOwnership write Gas Optimization,

Centralization
Refer Audit
Findings

14 whenNotPaused modifier Passed No Issue
15 pause write Centralization Refer Audit

Findings
16 unpause write Centralization Refer Audit

Findings
17 setLawEnforcementRole write Gas Optimization Refer Audit

Findings
18 onlyLawEnforcementRole modifier Passed No Issue
19 freeze write Freeze account,

Centralized risk
Refer Audit
Findings

20 unfreeze write Centralization Refer Audit
Findings

21 wipeFrozenAddress write Centralized Risk, Gas
estimation failed, Gas

Optimization,
Centralized risk

Refer Audit
Findings

22 isFrozen read Gas Optimization Refer Audit
Findings

23 setSupplyController write Gas Optimization Refer Audit
Findings

24 onlySupplyController modifier Passed No Issue



25 increaseSupply write Gas estimation failed,
Gas Optimization,

Unlimited token minting,
Centralization

Refer Audit
Findings

26 decreaseSupply write Gas estimation failed,
Gas Optimization,
Centralization

Refer Audit
Findings



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.



Audit Findings

Critical Severity

(1) Centralized risk: OKB.sol

The owner has special permission to freeze others' addresses to restrict interaction to the

smart contract.

The owner has special permission to burn the balance of others.

Resolution:We suggest making smart contracts 100% decentralized.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.



Low

(1) Unlimited token minting: OKb.sol

Token minting without any maximum limit is considered inappropriate for tokenomics.

Resolution:We recommend placing some limit on token minting to mitigate this issue.

Very Low / Informational / Best practices:
(1) Use the latest solidity version: OKb.sol, SafeMath.sol

Use the latest solidity version while contract deployment to prevent any compiler version

level bugs.

Resolution: Please use versions greater than 0.8.7.

(2) Solidity constants naming conventions:

OKb.sol

Constants are defined in lowercase.

Resolution: Constants should be named with all capital letters with underscores

separating words.



(3) Gas Optimization:

OKb.sol
The public functions that are never called by the contract could be declared external.

● approve

● decreaseAllowance

● decreaseSupply

● increaseAllowance

● increaseSupply

● setLawEnforcementRole

● setSupplyController

● transferFrom

● transferOwnership

● wipeFrozenAddress

● allowance

● balanceOf

● isFrozen

Resolution:We suggest declaring this function external for better Gas optimization.

(4) Freeze account: OKb.sol

The onlyLawEnforcementRole can Freeze the account of any user.

Resolution:We suggest making your smart contract 100% decentralized.

(5) Centralization: OKb.sol
In the contract onlyOwner as an owner authority on the following function:

● transferOwnership

● pause



● unpause

In the contractor onlySupplyController as an owner authority on the following function:

● increaseSupply

● decreaseSupply

In the contract onlyLawEnforcementRole as an owner authority on the following function:

● unfreeze

● wipeFrozenAddress

Resolution: Any compromise to these accounts may allow the hacker to manipulate the

project through these functions We suggest carefully managing the owner account's

private key to avoid any potential risks of being hacked. In general, we strongly

recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or smart-contract-based accounts with enhanced security

practices.

(6) Error message for require is too long: OKb.sol

Ethereum has a gas limit for each block. This limit includes the gas used by all

transactions and contract executions within that block. When a required statement fails, it

results in an exception, and the error message, along with the gas used up to that point, is

included in the transaction's revert message.

Resolution:We suggest writing short and clear messages in the required statement.



(7) Gas estimation failed: OKb.sol

If the gas requirement of a function is higher than the block gas limit, it cannot be

executed. Please avoid actions that modify large areas of storage (this includes clearing or

copying arrays in storage).

Resolution:We suggest breaking them down into smaller functions or optimized code.

(8) Use openzeppelin's access control mechanism: OKb.sol



Written own logic to grant ownership mechanism to contract but it is a good practice to use

openzeppelin ownable contract to implement access control mechanism.

Resolution: Use openzeppelin import "@openzeppelin/contracts/access/Ownable.sol";

(9) Use openzepplin's pausable library to pause and unpause token transfers, minting and

burning: OKB.sol

Written own logic to pause and unpause the contract but it's a good practice to use

openzepplin's pausable library to pause and unpause token transfers, minting and burning.

Resolution: use openzeppelin link:
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Pausable.sol";



Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

Following are Admin functions:

OKBImplementation.sol

● transferOwnership: Allows the current owner to transfer control of the contract to a

newOwner.

● pause: Triggers stopped by the owner.

● unpause: Returns to normal state by the owner.

● setLawEnforcementRole: Sets a new law enforcement role address only

lawEnforcementRole or Owner.

● freeze: Freezes an address balance from being transferred by the

lawEnforcementRole or Owner.

● unfreeze: Unfreezes an address balance allowing transfer by the

lawEnforcementRole or Owner.

● wipeFrozenAddress: Wipes frozen address can be set by the law enforcement role

or Owner.

● setSupplyController: Sets a new supply controller addressed by the

SupplyController or Owner.

● increaseSupply: Increases the total supply by minting the specified number of

tokens to the supply controller account by the SupplyController.

● decreaseSupply: Decreases the total supply by burning the specified number of

tokens from the supply controller account by the SupplyController.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.



Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 1 critical, 1 low, and 9

informational issues in the smart contract. So, the smart contract is ready for the
mainnet deployment after resolving those issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Poor Secured”.

https://etherscan.io/token/0x75231f58b43240c9718dd58b4967c5114342a86c#code


Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's website to get a high-level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix
Code Flow Diagram - OKB Token

OKBImplementation Diagram



Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> OKBImplementation.sol



Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

OKBImplementation.sol



Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

OKBImplementation.sol

Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:0
Provide an error message for require
Pos: 9:12
Provide an error message for require
Pos: 9:23
Constant name must be in capitalized SNAKE_CASE
Pos: 5:60
Constant name must be in capitalized SNAKE_CASE
Pos: 5:61
Constant name must be in capitalized SNAKE_CASE
Pos: 5:62
Error message for require is too long
Pos: 9:292
Error message for require is too long
Pos: 9:332
Error message for require is too long
Pos: 9:394

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.




