
Project: Pendle Token
Website: pendle.finance
Platform: Ethereum
Language: Solidity
Date: May 8th, 2024

https://www.pendle.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ……………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………...21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Pendle token
smart contract from pendle.finance was audited extensively. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on May 8th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● This Solidity contract is for a token called PENDLE, which implements the IPENDLE

interface. Here's a breakdown of the contract:

○ Constructor: The contract constructor initializes various parameters

including the token distribution to different addresses, emission rates, start

time, and other configuration parameters.

○ Token Transfer Functions: Functions for transferring tokens (transfer,

transferFrom, approve, increaseAllowance, decreaseAllowance) are

implemented.

○ Delegation Functions: Functions for delegate voting power (delegate,

delegateBySig), and related internal functions are implemented.

○ Vote Calculation Functions: Functions for calculating vote balance

(getCurrentVotes, getPriorVotes), and related internal functions are

implemented.

○ Internal Transfer and Approval Functions: Internal functions for

transferring tokens, approving spending, and updating voting power are

implemented (_transfer, _approve, _moveDelegates, _writeCheckpoint).

○ Utility Functions: Utility functions like safe32, getChainId, and

_getCurrentWeek are implemented.

○ Config Changes Functions: Functions for initiating and applying

configuration changes (initiateConfigChanges, applyConfigChanges) are

implemented.

○ Liquidity Emission Functions: Functions for claiming liquidity emissions

(claimLiquidityEmissions, _mintLiquidityEmissions) are implemented.

○ Token Minting and Burning Functions: Functions for minting and burning

tokens (_mint, _burn) are implemented.

● This contract governs the behavior of the PENDLE token including transfers, voting,

delegation, configuration changes, and emission of additional tokens for liquidity

incentives.

Audit scope

Name Code Review and Security Analysis Report for
Pendle Token Smart Contract

Platform Ethereum

File PENDLE.sol

Smart Contract Code 0x808507121b80c02388fad14726482e061b8da827

Audit Date May 8th, 20234

https://etherscan.io/token/0x808507121b80c02388fad14726482e061b8da827#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Pendle

● Symbol: PENDLE

● Decimals: 18

YES, This is valid.

Ownership control:
● The Governance owner can initiate Configuration

changes.

● The liquidity incentives recipient owner can claim

liquidity emissions.

● Allows governance to withdraw Ether in a Pendle

contract in case of accidental ETH transfer into the

contract.

● Allows governance to withdraw all IERC20 compatible

tokens in a Pendle contract in case of accidental token

transfer into the contract.

● Allows the pending governance address to finalize the

change governance process by the governance owner.

● Allows the current governance to set the pending

governance address by the governance owner.

YES, This is valid.
We suggest
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 5 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? No

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it Proxy? No

Can Take Ownership? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Pendle Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Pendle Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Pendle Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website: https://www.pendle.finance which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that are

based on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x808507121b80c02388fad14726482e061b8da827#code
https://www.pendle.finance

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 approve external Passed No Issue
3 transfer external Passed No Issue
4 transferFrom external Passed No Issue
5 increaseAllowance write Public functions should be

declared external
Refer Audit
Findings

6 decreaseAllowance write Public functions should be
declared external

Refer Audit
Findings

7 burn write Public functions should be
declared external

Refer Audit
Findings

8 allowance external Public functions should be
declared external

Refer Audit
Findings

9 balanceOf external Passed No Issue
10 getCurrentVotes external Passed No Issue
11 delegate write Public functions should be

declared external
Refer Audit
Findings

12 delegateBySig write Public functions should be
declared external

Refer Audit
Findings

13 getPriorVotes read Public functions should be
declared external

Refer Audit
Findings

14 _delegate internal Passed No Issue
15 _transfer internal Passed No Issue
16 _approve internal Passed No Issue
17 _moveDelegates internal Passed No Issue
18 _writeCheckpoint internal Passed No Issue
19 safe32 internal Passed No Issue
20 getChainId internal Passed No Issue
21 initiateConfigChanges external access only Governance No Issue
22 applyConfigChanges external Passed No Issue
23 claimLiquidityEmissions external Passed No Issue
24 _mintLiquidityEmissions internal Passed No Issue
25 _getCurrentWeek internal Passed No Issue
26 _mint internal Passed No Issue
27 _burn internal Passed No Issue
28 withdrawEther external Low-Level Calls, Missing

Zero Address Validation
Refer Audit
Findings

29 withdrawToken external access only Governance No Issue
30 initialized modifier Passed No Issue
31 onlyGovernance modifier Passed No Issue
32 claimGovernance write Passed No Issue
33 transferGovernance write access only Governance No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best Practices:
(1) Low-Level Calls:

Withdrawable.sol

This contract uses low-level calls, which may be unsafe.

Resolution: Enhance safety by reviewing low-level calls, considering high-level

alternatives, and consulting security experts. Prioritize code security and integrity.

(2) Floating Pragma: IPENDLE.sol, PENDLE.sol, Permissions.sol, Withdrawable.sol

This contract may not function as expected due to inconsistent solidity compiler versions

being specified.

Resolution: Specify and lock the Solidity pragma version to a fixed and known version in

your smart contract to avoid potential issues caused by unexpected compiler behavior in

future versions.

(3) Public functions should be declared external: PENDLE.sol
Some functions in this contract should be declared as external in order to save gas.

● increaseAllowance

● decreaseAllowance

● burn

● delegate

● delegateBySig

● getPriorVotes

Resolution: External functions can be called more efficiently, reducing gas costs

compared to public functions. Update the function declarations accordingly to enhance gas

efficiency.

(4) Division Before Multiplication: PENDLE.sol

The order of operations used may result in a loss of precision.

Resolution: Ensure precision by prioritizing multiplication before division in calculations.

Review and adjust the order of operations accordingly, and rigorously test the updated

code for accuracy.

(5) Missing Zero Address Validation:Withdrawable.sol

Some functions in this contract may not appropriately check for zero addresses being

used.

Resolution: Implement zero address validation checks in relevant functions to prevent

unintended behavior and enhance the contract's security.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

PENDLE.sol
● initiateConfigChanges: The Governance owner can initiate Configuration changes.

● claimLiquidityEmissions: The liquidity incentives recipient owner can claim liquidity

emissions.

Withdrawable.sol
● withdrawEther: Allows governance to withdraw Ether in a Pendle contract in case of

accidental ETH transfer into the contract.

● withdrawToken: Allows governance to withdraw all IERC20 compatible tokens in a

Pendle contract in case of accidental token transfer into the contract.

Permissions.sol
● claimGovernance: Allows the pendingGovernance address to finalize the change

governance process by the governance owner.

● transferGovernance: Allows the current governance to set the pendingGovernance

address by the governance owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 5 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0x808507121b80c02388fad14726482e061b8da827#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - PENDLE Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> PENDLE.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

PENDLE.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

PENDLE.sol

Compiler version >=0.6.2 <0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:2
Error message for require is too long
Pos: 9:57
Error message for require is too long
Pos: 9:114
Error message for require is too long
Pos: 9:139
Error message for require is too long
Pos: 9:163
Error message for require is too long
Pos: 9:362
Error message for require is too long
Pos: 9:483
Error message for require is too long
Pos: 13:513
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:572
Contract has 19 states declarations but allowed no more than 15
Pos: 1:650
Constant name must be in capitalized SNAKE_CASE
Pos: 5:659
Constant name must be in capitalized SNAKE_CASE
Pos: 5:660
Constant name must be in capitalized SNAKE_CASE
Pos: 5:661
Constant name must be in capitalized SNAKE_CASE
Pos: 5:662
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:736
Avoid making time-based decisions in your business logic
Pos: 21:757
Avoid making time-based decisions in your business logic
Pos: 17:915
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:1053
Avoid making time-based decisions in your business logic
Pos: 34:1076
Avoid making time-based decisions in your business logic
Pos: 13:1082
Avoid making time-based decisions in your business logic

Pos: 19:1129

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

