@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Rocket Pool ETH
Website: rocketpool.net
Platform: Ethereum
Language: Solidity

Date: April 24th, 2024

https://rocketpool.net

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
BUSINESS RISK ANAlYSIS ... 8
Code QUAIIRY ...eee e 9
DOCUMENTALION ... e 9
0 LY o) D T=T o= o [T T [T 9
ASHIS OVEIVIBW ..o e 10
Severity DefinitioNS ... 12
AUt FINAINGS ..o 13
@70 o T 1017 T o 16
(@ 18] g1/ 1= 1 ToTo (o] (oo VPP 17
DISCIAIMEIS ... e 19
Appendix
o Code FIOW Diagram ... 20
o Slither RESUIS LOG ...uviiiiiiii e 21
e Solidity staticanalysis ..., 23
® SOININt LNl .. 25

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of Rocket Pool ETH Token from rocketpool.net were audited. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on April 24th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e RocketTokenRETH is a tokenized stake in the Rocket Pool network, backed by ETH
at a variable exchange rate subject to liquidity.

e Rocket Pool ETH Token smart contracts offer various functions like minting,
burning, depositing excess, withdrawing deposit collateral, and depositing excess
collateral.

e This contract facilitates the minting and burning of rETH tokens, which represent
tokenized stakes in the Rocket Pool network, backed by ETH. It ensures the
exchangeability of rETH tokens with ETH at variable exchange rates. Additionally, it

handles the deposit and withdrawal of ETH collateral from the Rocket Pool deposit

pool.
Audit scope
Name Code Review and Security Analysis Report for
Rocket Pool ETH Smart Contract
Platform Ethereum
File RocketTokenRETH.sol
Ethereum Code 0xae78736cd615f374d3085123a210448e74fc6393
Audit Date April 24th, 2024

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0xae78736cd615f374d3085123a210448e74fc6393#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:
e Name: Rocket Pool ETH
e Symbol: rETH
e Decimals: 18

e \ersion: 1

YES, This is valid.

RocketDepositPool contract control:
e Deposit excess ETH from the deposit pool.
e MintarETH.

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’s solidity based smart contracts
are “Secured”. Also, these contracts contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 3 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner-controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Business Risk Analysis

Category Result
Buy Tax 0%
Sell Tax 0%
Cannot Buy No
Cannot Sell No
Max Tax 0%
Modify Tax Not Detected
Fee Check No
Is Honeypot Not Detected

Trading Cooldown Not Detected

oo o000 Q0O CCQOOOCQONOYIYOYQOVOCO OV VYT

Can Pause Trade? No
Pause Transfer? No
Max Tax? No
Is it Anti-whale? No
Is Anti-bot? Not Detected
Is it a Blacklist? Not Detected
Blacklist Check No
Can Mint? Yes
Is it a Proxy? No
Can Take Ownership? No
Hidden Owner? No
Self Destruction? No
Auditor Confidence High

Overall Audit Result: PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Rocket Pool ETH are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Rocket Pool ETH.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Rocket Pool ETH Token smart contract code in the form of an Etherscan

web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0xae78736cd615f374d3085123a210448e74fc6393#code

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyLatestNetworkContract modifier Passed No Issue
3 | onlyLatestContract modifier Passed No Issue
4 | onlyRegisteredNode modifier Passed No Issue
5 | onlyTrustedNode modifier Passed No Issue
6 [onlyRegisteredMinipool modifier Passed No Issue
7 | onlyGuardian modifier Passed No Issue
8 | getContractAddress internal Passed No Issue
9 | getContractAddressUnsafe internal Passed No Issue
10 | getContractName internal Passed No Issue
11 | getRevertMsg internal Passed No Issue
12 | getAddress internal Passed No Issue
13 | getUint internal Passed No Issue
14 | getString internal Passed No Issue
15 | getBytes internal Passed No Issue
16 | getBool internal Passed No Issue
17 | getint internal Passed No Issue
18 | getBytes32 internal Passed No Issue
19 | setAddress internal Passed No Issue
20 | setUint internal Passed No Issue
21 | setString internal Passed No Issue
22 | setBytes internal Passed No Issue
23 | setBool internal Passed No Issue
24 | setint internal Passed No Issue
25 | setBytes32 internal Passed No Issue
26 | deleteAddress internal Passed No Issue
27 | deleteUint internal Passed No Issue
28 | deleteString internal Passed No Issue
29 | deleteBytes internal Passed No Issue
30 | deleteBool internal Passed No Issue
31 | deletelnt internal Passed No Issue
32 | deleteBytes32 internal Passed No Issue
33 [addUint internal Passed No Issue
34 [subUint internal Passed No Issue
35 | name read Passed No Issue
36 | symbol read Passed No Issue
37 | decimals read Passed No Issue
38 | totalSupply read Passed No Issue
39 [balanceOf read Passed No Issue
40 | transfer write Passed No Issue
41 | allowance read Passed No Issue
42 | approve write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

43 | transferFrom write Passed No Issue
44 | increaseAllowance write Passed No Issue
45 | decreaseAllowance write Passed No Issue
46 | transfer internal Passed No Issue
47 | mint internal Passed No Issue
48 | burn internal Passed No Issue
49 | approve internal Passed No Issue
50 [setupDecimals internal Passed No Issue
51 [beforeTokenTransfer internal Passed No Issue
52 | receive external Passed No Issue
53 | getEthValue read Passed No Issue
54 | getRethValue read Passed No Issue
55 | getExchangeRate external Passed No Issue
56 | getTotalCollateral read Passed No Issue
57 | getCollateralRate read Passed No Issue
58 | depositExcess external | Centralized Ownership | Refer Audit
and Privileges Findings
Management
59 | mint external | Centralized Ownership | Refer Audit
and Privileges Findings
Management
60 | burn external Passed No Issue
61 | withdrawDepositCollateral write Passed No Issue
62 | depositExcessCollateral external Passed No Issue
63 | beforeTokenTransfer internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Consistent Pragma Solidity Version Usage: RocketTokenRETH.sol

INFO:Detectors:
Different versions of Solidity are used:

- Version used: ['0.7.6", '>=0.6.0<0.8.0"]

- 8.7.6 (RocketBase.sol#27)
(RocketDAOProtocolSettingsNetworkInterface.sol#27)
(RocketDepositPoolInterface.sol#27)
(RocketNetworkBalancesInterface.sol#27)

(
(

~J
(=)}

RocketStoragelnterface.sol#27)
RocketTokenRETH.sol#27)
(RocketTokenRETHInterface.sol#27)
.0<0.8.0 (Context.sol#3)
.0<0.8.0 (ERC20.s0l#3)
.0<0.8.0 (IERC20.s01#3)
.6.0<0.8.0 (SafeMath.sol#3)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used

VVY VOOOOOO
[=)I= = R =) R =) = I = I = R

O 00O NNNNNN

Detected different Solidity versions are used.
Resolution: We suggest using one Solidity version.

(2) Centralized Ownership and Privileges Management: RocketTokenRETH.sol

The onlyLatestContract as an owner of these functions:

e depositExcess

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e mint

Resolution: We suggest carefully managing the owner of these functions.

(3) Use the Latest Solidity Compiler Version for Enhanced Security:
RocketTokenRETH.sol

INFO:Detectors:
Different versions of Seolidity are used:

- Version used: ['0.7.6", '>=0.6.0<0.8.0"]
(RocketBase.sol#27)
(RocketDAOProtocolSettingshNetworkInterface.sol#27)
(RocketDepositPoolInterface.sol#27)
(RocketNetworkBalancesInterface.sol#27)

(
(

@
~J
(=)}

RocketStoragelnterface.sol#27)
RocketTokenRETH.sol#27)
(RocketTokenRETHInterface.sol#27)
.0<0.8.0 (Context.sol#3)
.0<0.8.0 (ERC20.s01#3)
.0<0.8.0 (IERC20.s01#3)
.6.0<0.8.0 (SafeMath.sol#3)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used

OOy OO O

()]

VYV Y OO0 OO
OO OO NSNS

The solc frequently releases new compiler versions. Using an old version prevents access
to new Solidity security checks. We also recommend avoiding complex pragma

statements.

Resolution: Deploy with any of the following Solidity versions:
0.8.18

The recommendations take into account:

e Risks related to recent releases
e Risks of complex code generation changes
e Risks of new language features

e Risks of known bugs

Use a simple pragma version that allows any of these versions. Consider using the latest

version of Solidity for testing.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

StakedAaveV3.sol

e mint: Mint rETH only accepts calls from the RocketDepositPool contract.
e depositExcess: Deposit excess ETH from the deposit pool only accepts calls from

the RocketDepositPool contract.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all
possible tests based on given objects as files. We had observed 3 informational issues in
the smart contracts. And those issues are not critical. So, it’'s good to go for the

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0xae78736cd615f374d3085123a210448e74fc6393#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of the systems we review and
aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and white
box penetration testing. We look at the project's website to get a high-level understanding
of what functionality the software under review provides. We then meet with the
developers to gain an appreciation of their vision of the software. We install and use the
relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ RocketStoragelnterface

@ QetDeployedStatus()
© QgetGuardian()

© setGuardian()

© confirmGuarcdian()

© QgetAddress()

® QgetUint()

© QgetString()

@ QgetBytes()

© QgetBool()

© Qgetint()

© QgetBytes32()

© setAddress()

© setlint()

© setString()

© setBytes()

© setBool()

© setint()

© setBytes32()

@ delsteAddress()

© deletelint()

© deleteString()

© deleteBytes()

© deleteBool()

© deletelnt()

® deleteByles32()

© addUint()

© sublint()

© O getNodeWithdrawalAddress()
© QgethlodePendingWithdrawal Address()
© setithdrawalAddress()
© confirmWithdrawalAddress()

@ RocketDepositPoollnterface

Code Flow Diagram - Rocket Pool ETH

@ RocketDACProtocolSettingsNetwork/nterface

© QgethodeConsensusThreshold()
© QgetSubmitBalancesEnabled()
© QgetsubmitBalancesFrequency()
® QugetSubmitPricesEnabled()

© QgetSubmitPricesFrequency()

© QgetMinimumodeFes()

© QgetTargethodeFee()

© QgethaximumhodeFee()

© QgethodeFeeDemandRangs()

@ QgetTargetRethCollateralRate()
© QgetRethDepostDelay()

@ RocketNetworkBalancesinterface

© QgetBalance()
© QgetExcessBalance()

© @deposit()

© &recycleDissolvedDepost()
© &recycleExcessColateral()
@ @recycleLiquidatedStake()
® assignDeposits()

© withdrawExcessBalance()
© QgetUserLastD

@ QgetBalancesBlock()

© QgetLatestReportableBlock()
© QgetTotalETHBalance()

© QgetStakingETHBalance()

© QgetTotalRETHSUppIY()

© QgetETHUtiizationRate()

© submitBalances()

@ executeUpdateBalances()

(&) RocketTokenRETH

RocketBase
ERC20
RocketTokenRETHInterface

WnSafeMath for uint

© &_constructor_()
© QgstEthValue()

© QgetRethValue()

© QgstExchangeRate()

© QgetTotalCollateral()

© QgetColiateralRate()

© @dsposiExcess()

® mint()

© burn()

B withdrawDepositCollateral()
@ depostExcessColiataral()
© _beforeTokenTransfer()

i

"" (@) Erc

! Context
! IERC20

! O addr

nSafeMath for uint?96

O address=>Uint256 _balances

int256 _:

J

O wint256 _fotalSupply
O string _name

O String _symbol

0 uintg _decimals

© __constructor_()
@ Qyname()

@ Qsymbol()

© Qgecimals()

o Qotalsupply()

© Qalance0f()

© transfer()

© Qallowance()

© approve()

© transferFrom()

© increaseAllowance()

for uint

| © decreaseAllowancef)

< _transter()

< Tmirt()

. < Zburn()

. < _approve()

| © _sstupDecimals()

© _beforeTokenTransfer()

/

' sfor uint256

N ¥

N
(B) sarentath

< QiryAdd()

(@) RocketTokenRETHIntertace

IERC20

© QetEthValue()

© QgetRethValue()

© QgetExchangeRate()

@ QgetTotalCollateral()

© QetCollateralRate()

© BudepositExcess()

© depositExcessCollateral()
© mint()

® bun()

< QrySub()

@ IERC20

© Qryhiult)
< QryDiv()
< Qtryod()
© Qadd()
< Qsub()
< amuif)
< aiv()
© Qmod()

@ (‘:‘omaxt

© Q_msgSender()
© Q_msgData()

© QotalSupply()
© Qpalancet()
© transfer()
© Qallowance()
© approve()
© transferFrom()

@ RocketBase

© uint256 calcBase
O uintd version

© RochetStoragelnterface rocketStorage

© _constructor_()
© QgetContractAddress()
© QgetContractAddressUnsafe()
© QgetContractiame()
© QgetRevertisa()

© QgetAddress()

© Qgetlint(y

< QgetString()

© QgetBytes()

< QgetBool()

@ Qgetint()

< QgetBytesaz()

© setAddress()

© setuint()

© setString()

© setBytes()

© sefBool()

© sefint()

© sefBytes32()

© deleteAddress()

© deletelint()

© deleteString()

© delsteBytes()

© deleteBool()

© deletelrt()

© deleteBytes3()

© addUint()

© subUint()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.
We did the analysis of the project altogether. Below are the results.

Slither Log >> RocketTokenRETH.sol

- INLINE
ce: ht

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

tB
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
T

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program
is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

RocketTokenRETH.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
RocketTokenRETH.burn(uint256): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 961:4:

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases.
Additionally static analysis modules do not parse inline Assembly, this can lead
to wrong analysis results.

more

Pos: 793:8:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the block timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more

Pos: 957:55:

Gas costs:

Gas requirement of function RocketTokenRETH.burn is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid loops in
your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 961:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function RocketTokenRETH.depositExcessCollateral is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 991:4:

Constant/View/Pure functions:

RocketTokenRETH.getEthValue(uint256) : Is constant but potentially should not be.

Note: Modifiers are currently not considered by this static analysis.

more
Pos: 894:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a
bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing
external component.

more

Pos: 650:8:

No return:

RocketNetworkBalancesInterface.getTotalETHBalance(): Defines a return type but never

explicitly returns a value.

Pos: 380:4:

Data truncated:

Division of integer values yields an integer value again. That means eg. 10/100 =0
instead of 0.1 since the result is an integer again. This does not hold for division of (only)
literal values since those yield rational constants.

Pos: 266:15:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming
errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

RocketTokenRETH.sol

Compiler version >=0.6.0 <0.8.0 does not satisfy the 70.5.8 semver
requirement

Pos: 1:2

Error message for require i long

Pos: 9:192

Error message for require i long

Pos: 9:584

Error message for require i long

Pos: 9:585

Error message for require 1 long

Pos: 9:625

Error message for require 1 long

Pos: 9:648

Error message for require i long

Pos: 9:649

Code contains empty blocks

Pos: 94:680

Explicitly mark visibility of state

Pos: 5:690

Constant name must be in capitalized SNAKE CASE

Pos: 5:690

Explicitly mark visibility of state

Pos: 5:696

Error message for require is too long

Pos: 9:705

Error message for require 1is too long

Pos: 9:746

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:756

Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:796

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:881

Avoid making time-based decisions in your business logic
Pos: 52:889

Error message for require 1is too long

Pos: 9:913

Avoid making time-based decisions in your business logic
Pos: 52:943

Avoid making time-based decisions in your business logic
Pos: 56:956

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

or message for require is too long
92966
logic

63:976

r message for require 1is too long

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

