
Project: Sand Token
Website: sandbox.game
Platform: Ethereum
Language: Solidity
Date: May 8th, 2024

https://www.sandbox.game/en/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 27

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of Sand Token from sandbox.game were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 8th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The SAND is a smart contract written in the Ethereum blockchain's Solidity

programming language. Let's break down the functionality and components of the

contract:

○ BytesUtil Library: This library contains functions for manipulating byte

arrays, including copying memory, converting addresses to bytes, and

converting uint256 to bytes.

○ ERC20Events Contract: This contract defines events for ERC20 token

transfers and approvals.

○ Admin Contract: This contract defines an administrator role and allows for

changing the administrator address.

○ SuperOperators Contract: This contract extends the Admin contract and

adds super operator functionality. Super operators have special rights, such

as the ability to transfer tokens of all users.

○ ERC20BasicApproveExtension Contract: This contract provides additional
functionality for approving and calling contracts with data. It includes

methods for approving transfers and executing calls with specific gas limits.

○ ERC20ExecuteExtension Contract: This contract extends the

SuperOperators contract and adds execution administrator and operator

functionality. It allows for executing calls on behalf of the contract with

specific gas limits and charging tokens for gas used.

○ ERC20BaseToken Contract: This contract implements the basic

functionality of an ERC20 token. It includes methods for transferring tokens,

checking balances, and approving transfers.

○ Sand Contract: This contract implements the SAND ERC20 token. It inherits

functionality from ERC20ExecuteExtension and

ERC20BasicApproveExtension contracts and initializes the SAND token with

an initial supply of 3 billion tokens.

● Overall, the provided code constitutes a comprehensive ERC20 token

implementation with additional features such as super operators, execution

administrators, and extended approval and execution functionalities. The SAND

token is designed to be used within the Ethereum ecosystem for various purposes

such as payments, governance, or utility within decentralized applications (dApps).

Audit scope

Name Code Review and Security Analysis Report for Sand
Token Smart Contract

Platform Ethereum

File Sand.sol

Smart Contract Code 0x3845badAde8e6dFF049820680d1F14bD3903a5d0

Audit Date May 8th, 2024

https://etherscan.io/token/0x3845badAde8e6dFF049820680d1F14bD3903a5d0#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: SAND

● Symbol: SAND

● Decimals: 18

● Total Supply: 3 billion

YES, This is valid.

Admin control:
● The admin can update the new super operator

address.

● The current admin can update a new admin

address.

● The admin can update the new execution admin

and operator address.

● The owner can add an allowance.

YES, This is valid.
We suggest renouncing
ownership once the
ownership functions are
not needed. This is to make
the smart contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 6 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version is not specified Passed
Solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? No

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Sand Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Sand Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Sand Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that is based

on well-known industry-standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x3845badAde8e6dFF049820680d1F14bD3903a5d0#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Missing Zero Address

Validation
Refer Audit
Findings

2 name read Inappropriate State
Mutability for the

Function

Refer Audit
Findings

3 symbol read Inappropriate State
Mutability for the

Function

Refer Audit
Findings

4 totalSupply read Passed No Issue
5 balanceOf read Passed No Issue
6 allowance read Passed No Issue
7 decimals read Inappropriate State

Mutability for the
Function

Refer Audit
Findings

8 transfer write Passed No Issue
9 transferFrom write Passed No Issue
10 burn external Passed No Issue
11 burnFor external Passed No Issue
12 approve write Passed No Issue
13 approveFor write Passed No Issue
14 addAllowanceIfNeeded write Passed No Issue
15 _addAllowanceIfNeeded internal Passed No Issue
16 _approveFor internal Passed No Issue
17 _transfer internal Passed No Issue
18 _mint internal Passed No Issue
19 _burn internal Passed No Issue
20 getExecutionAdmin external Passed No Issue
21 changeExecutionAdmin external Passed No Issue
22 setExecutionOperator external Passed No Issue
23 isExecutionOperator read Passed No Issue
24 executeWithSpecificGas external Missing Zero Address

Validation
Refer Audit
Findings

25 approveAndExecuteWithSp
ecificGas

external Passed No Issue

26 approveAndExecuteWithSp
ecificGasAndChargeForIt

external Passed No Issue

27 transferAndChargeForGas external Passed No Issue
28 _charge internal Passed No Issue
29 _approveAndExecuteWithS

pecificGas
internal Passed No Issue

30 _transfer internal Passed No Issue
31 _addAllowanceIfNeeded internal Passed No Issue
32 approveAndCall external Passed No Issue

33 paidCall external Passed No Issue
34 _approveFor internal Passed No Issue
35 _addAllowanceIfNeeded internal Passed No Issue
36 setSuperOperator external Passed No Issue
37 isSuperOperator read Passed No Issue
38 getAdmin external Passed No Issue
39 changeAdmin external Missing Zero Address

Validation
Refer Audit
Findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Use the latest solidity version: Admin.sol, BytesUtil.sol

Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use 0.8.22 which is the latest version.

(2) Missing Zero Address Validation: Admin.sol, ERC20ExecuteExtension.sol

Sand.sol

Some functions in this contract may not appropriately check for zero addresses being

used.

Resolution: Check that newAdmin is not zero.

(3) Floating Pragma: ERC20BaseToken.sol, ERC20BasicApproveExtension.sol,
ERC20Events.sol, ERC20ExecuteExtension.sol, Sand.sol, SuperOperators.sol

This contract may not function as expected due to inconsistent solidity compiler versions

being specified.

Resolution: Specify and lock the Solidity pragma version to a fixed and known version in

your smart contract to avoid potential issues caused by unexpected compiler behavior in

future versions.

(4) Inappropriate State Mutability for the Function:

Sand.sol

ERC20BaseToken.sol

The decimals function is erroneously declared as public view when it doesn't modify any

state variables. This misleading declaration can lead to misunderstandings about the

function's behavior.

Resolution: Revise the decimals, name, and symbol functions state mutability to

accurately represent their non-state-modifying nature, thereby enhancing code clarity and

optimizing gas consumption.

(5) Low-Level Calls: ERC20BasicApproveExtension.sol, ERC20ExecuteExtension.sol
This contract uses low-level calls, which may be unsafe.

Resolution: Enhance safety by reviewing low-level calls, considering high-level

alternatives, and consulting security experts. Prioritize code security and integrity.

(6) Public Functions Should be Declared External: Sand.sol
Some functions in this contract should be declared as external in order to save gas.

Resolution: Update public functions in the smart contract code to explicitly declare them

as "external" for clarity and to adhere to best practices for state mutability.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

The following are Admin functions:

ERC20BaseToken.sol
● approveFor: The user'spender' is authorized to transfer 'amount' tokens from

'owner'.

● addAllowanceIfNeeded: The owner can add allowance.

ERC20ExecuteExtension.sol
● changeExecutionAdmin: The admin can update the new execution admin address.

● setExecutionOperator: The admin can update the new execution operator address.

SuperOperators.sol
● setSuperOperator: The admin can update the new super operator address.

Admin.sol
● changeAdmin: The current admin can update a new admin address.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 6 informational issues in the

smart contracts. And those issues are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0x3845badAde8e6dFF049820680d1F14bD3903a5d0#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Sand Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> Sand.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

Sand.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

Sand.sol

Compiler version ^0.5.2 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 13:7
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:16
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:30
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:39
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:51
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:68
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:84
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:95
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:101
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:117
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:121
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:126
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:130
Error message for require is too long
Pos: 9:180
Avoid using low level calls.
Pos: 51:216
Avoid to use ".call.value()()"
Pos: 51:216
Avoid using low level calls.
Pos: 51:241
Avoid to use ".call.value()()"
Pos: 51:241
Error message for require is too long
Pos: 9:268
Error message for require is too long
Pos: 9:280

Error message for require is too long
Pos: 9:302
Error message for require is too long
Pos: 9:322
Error message for require is too long
Pos: 9:349
Error message for require is too long
Pos: 9:375
Error message for require is too long
Pos: 9:531
Error message for require is too long
Pos: 9:543

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

