
Project: Staked Aave Token
Website: aave.com
Platform: Ethereum
Language: Solidity
Date: April 24th, 2024

https://aave.com/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS A SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of Staked Aave Token from aave.com were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 24th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The StakedTokenV3 contract is designed to enhance the staking functionality,

offering better flexibility, security, and management of staked tokens, including

handling slashing events, managing roles, and maintaining accurate exchange

rates.

● Staked Aave Contracts handle multiple contracts, and all contracts have different

functions.

○ AaveDistributionManager: This contract is an accounting contract for

managing multiple staking distributions.

○ StakedAaveV3: The StakedTokenV3 is a staked token that uses the AAVE

token.

○ StakedTokenV2: This contract allows the stakement of Aave tokens,

tokenization of positions, and receiving rewards, inheriting from a distribution

manager contract.

○ GovernancePowerWithSnapshot: This contract is ERC20 and includes

snapshots of balances on transfer-related actions.

○ RoleManager: This contract is a generic role manager for managing

slashing and cooldown admin in StakedAaveV3.

Audit scope

Name Code Review and Security Analysis Report for
Staked Aave Token Smart Contracts

Platform Ethereum

File StakedAaveV3.sol

Smart Contract Code 0x0fe58fe1caa69951dc924a8c222be19013b89476

Audit Date April 24th, 2024

https://etherscan.io/address/0x0fe58fe1caa69951dc924a8c222be19013b89476#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1: StakedAaveV3.sol
Claim helper owner control:

● Claim rewards and stake on behalf.

StakedTokenV3.sol
● Emission managers can configure assets.

● Cooldown on Behalf Of address can be set by the claim

helper owner.

● Redeem On Behalf address and amount can be set by

the claim helper owner.

● Claim rewards on Behalf address and amount can be

set by the claim helper owner.

● Claim Rewards And Redeem On Behalf address and

amount can be set by the claim helper owner.

● Slash address ad amount set by the slashing admin.

● Settle slashing by the slashing admin.

● Maximum Slashable percentage can be set by the

slashing admin.

YES, This is valid.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding
solidity-based critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section, The General overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 5 very low level issues.

Investors Advice: The Technic Overview of the general tract does not guarantee the

ethical nature of the project. Any owner-controlled functions should be executed by the

owner with responsibility. All stores,/users are advised to do their due diligence before

investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it Proxy? Yes

Can Take Ownership? No

Hidden Owner? No

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract file. Smart contracts contain Libraries, Smart

contracts, inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Staked Aave Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Staked Aave Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Staked Aave Token smart contract code in the form of an Etherscan web

link.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/address/0x0fe58fe1caa69951dc924a8c222be19013b89476#code

AS-IS overview

StakedAaveV3.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Missing-zero-addr

ess-validation
Refer Audit
Findings

2 REVISION write Passed No Issue
3 initialize external initializer No Issue
4 claimRewardsAndStake external Passed No Issue
5 claimRewardsAndStakeOnBeh

alf
external access only Claim

Helper
No Issue

6 _afterTokenTransfer internal Passed No Issue
7 _updateDiscountDistribution internal Passed No Issue
8 onlySlashingAdmin modifier Passed No Issue
9 onlyClaimHelper modifier Passed No Issue
10 onlyCooldownAdmin modifier Passed No Issue
11 REVISION write Passed No Issue
12 getRevision internal Passed No Issue
13 initialize external Passed No Issue
14 _initialize internal Passed No Issue
15 configureAssets external Passed No Issue
16 previewStake read Passed No Issue
17 stake external Passed No Issue
18 stakeWithPermit external Passed No Issue
19 cooldown external Passed No Issue
20 cooldownOnBehalfOf external access only Claim

Helper
No Issue

21 _cooldown internal Passed No Issue
22 redeem external Passed No Issue
23 redeemOnBehalf external access only Claim

Helper
No Issue

24 claimRewards external Passed No Issue
25 claimRewardsOnBehalf external access only Claim

Helper
No Issue

26 claimRewardsAndRedeem external Passed No Issue
27 claimRewardsAndRedeemOnB

ehalf
external claim No Issue

28 getExchangeRate read Passed No Issue
29 previewRedeem read Passed No Issue
30 slash external access only

Slashing Admin
No Issue

31 returnFunds external Passed No Issue
32 settleSlashing external access only

Slashing Admin
No Issue

33 setMaxSlashablePercentage external access only
Slashing Admin

No Issue

34 getMaxSlashablePercentage external Passed No Issue
35 setCooldownSeconds external access only Cool

down Admin
No Issue

36 getCooldownSeconds external Passed No Issue
37 COOLDOWN_SECONDS external Function

Overriding Issue
Refer Audit
Findings

38 _setMaxSlashablePercentage internal Passed No Issue
39 _setCooldownSeconds internal Passed No Issue
40 _claimRewards internal Passed No Issue
41 _claimRewardsAndStakeOnBe

half
internal Passed No Issue

42 _stake internal Passed No Issue
43 _redeem internal Passed No Issue
44 _updateExchangeRate internal Passed No Issue
45 _getExchangeRate internal Passed No Issue
46 _transfer internal Passed No Issue
47 _afterTokenTransfer internal Passed No Issue
48 _getDelegationState internal Passed No Issue
49 _getBalance internal Passed No Issue
50 getPowerCurrent read Passed No Issue
51 _setDelegationState internal Passed No Issue
52 _incrementNonces internal Passed No Issue
53 _getDomainSeparator internal Passed No Issue
54 DOMAIN_SEPARATOR read Passed No Issue
55 EIP712_REVISION external Passed No Issue
56 stake external Passed No Issue
57 redeem external Passed No Issue
58 cooldown external Passed No Issue
59 claimRewards external Passed No Issue
60 getTotalRewardsBalance external Passed No Issue
61 permit external Passed No Issue
62 _updateCurrentUnclaimedRew

ards
internal Passed No Issue

63 _getDomainSeparator internal Passed No Issue
64 _getDelegationState internal Passed No Issue
65 _getBalance internal Passed No Issue
66 _incrementNonces internal Passed No Issue
67 _setDelegationState internal Passed No Issue
68 delegateByType external Passed No Issue
69 delegate external Passed No Issue
70 getDelegateeByType external Passed No Issue
71 getDelegates external Passed No Issue
72 getPowerCurrent read Passed No Issue
73 getPowersCurrent external Passed No Issue
74 metaDelegateByType external Passed No Issue
75 metaDelegate external Passed No Issue

76 _governancePowerTransferBy
Type

internal Passed No Issue

77 _delegationChangeOnTransfer internal Passed No Issue
78 _getDelegatedPowerByType internal Passed No Issue
79 _getDelegateeByType internal Passed No Issue
80 _updateDelegateeByType internal Passed No Issue
81 _updateDelegationModeByTyp

e
internal Passed No Issue

82 _delegateByType internal Passed No Issue
83 onlyRoleAdmin modifier Passed No Issue
84 onlyPendingRoleAdmin modifier Passed No Issue
85 getAdmin read Passed No Issue
86 getPendingAdmin read Passed No Issue
87 setPendingAdmin write access only Role

Admin
No Issue

88 claimRoleAdmin external access only
Pending Role

Admin

No Issue

89 _initAdmins internal Passed No Issue
90 _mint internal Passed No Issue
91 _burn internal Passed No Issue
92 _configureAssets internal Passed No Issue
93 _updateAssetStateInternal internal Passed No Issue
94 _updateUserAssetInternal internal Passed No Issue
95 _claimRewards internal Passed No Issue
96 _getUnclaimedRewards internal Passed No Issue
97 _getRewards internal Passed No Issue
98 _getAssetIndex internal Passed No Issue
99 getUserAssetData read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No low-severity vulnerabilities were found.

Very Low / Informational / Best practices:
(1) Use the latest solidity version: StakedTokenV3.sol

Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use 0.8.21 which is the latest version.

(2) Missing-zero-address-validation: AaveDistributionManager.sol

Detects missing zero address validation. The owner can transfer ownership without

specifying the new owner, so the owner may lose ownership of the contract.

Resolution:We suggest first Checking that the address is not zero.

(3) Explicit Visibility for State Variables Warning: PercentageMath.sol

The warning is related to the visibility of state variables in your Solidity code.

Resolution: We recommend updating the code to explicitly mark the visibility of state

variables using the internal or public keyword, depending on the intended visibility.

(4) Warning: SPDX license identifier: RoleManager.sol
Warning: SPDX license identifier not provided in the source file.

Resolution: Add SPDX-License-Identifier.

(5) Function Overriding Issue: StakedAaveV3.sol
The derived contract lacks the necessary function override for "COOLDOWN_SECONDS,"

which is defined in two or more base classes with the same name and parameter types.

Resolution: To resolve this issue, add the "override" specifier to the function

"COOLDOWN_SECONDS" in the derived contract to indicate the intended override and

clarify the function's source.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

Following are Admin functions:

StakedAaveV3.sol

● claimRewardsAndStakeOnBehalf: Claim rewards and stake on behalf of the claim

helper owner.

StakedTokenV3.sol

● configureAssets: The emissions manager can configure assets.

● cooldownOnBehalfOf: Cooldown on Behalf of the address can be set by the claim

helper owner.

● redeemOnBehalf: The redeemOnBehalf address and amount can be set by the

claim helper owner.

● claimRewardsOnBehalf: Claim rewards on Behalf address and amount can be set

by the claim helper owner.

● claimRewardsAndRedeemOnBehalf: Claim Rewards And Redeem On Behalf

address and amount can be set by the claim helper owner.

● slash: Slash address and the amount set by the slashing admin.

● settleSlashing: Settle slashing by the slashing admin.

● setMaxSlashablePercentage: The maximum slashable percentage can be set by

the slashing admin.

● setCooldownSeconds: Cooldown seconds can be set by the cooldown admin.

RoleManager.sol

● setPendingAdmin: A new admin address can be set by the current admin.

● claimRoleAdmin: Claim role assigned by the Pending Role Admin.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 5 informational issues in the

smart contracts. And those issues are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://etherscan.io/address/0x0fe58fe1caa69951dc924a8c222be19013b89476#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Staked Aave Token

StakedAaveV3 Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> StakedAaveV3.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

StakedAaveV3.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

StakedAaveV3.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Use double quotes for string literals
Pos: 42:1237
Use double quotes for string literals
Pos: 7:1244
Use double quotes for string literals
Pos: 9:1276
Use double quotes for string literals
Pos: 7:1291
Use double quotes for string literals
Pos: 5:1307
Use double quotes for string literals
Pos: 5:1311
Use double quotes for string literals
Pos: 38:1377
Use double quotes for string literals
Pos: 42:1454
Use double quotes for string literals
Pos: 49:1576
Use double quotes for string literals
Pos: 7:1579
Use double quotes for string literals
Pos: 7:1583
Use double quotes for string literals
Pos: 34:1636
Use double quotes for string literals
Pos: 42:1637
Use double quotes for string literals
Pos: 9:1641
Use double quotes for string literals
Pos: 50:1656
Use double quotes for string literals
Pos: 24:1682
Use double quotes for string literals
Pos: 38:1685
Use double quotes for string literals
Pos: 44:1686
Use double quotes for string literals
Pos: 40:1687
Use double quotes for string literals

Pos: 24:1703
Use double quotes for string literals
Pos: 38:1706
Use double quotes for string literals
Pos: 44:1707
Use double quotes for string literals
Pos: 40:1708
Use double quotes for string literals
Pos: 7:1785
Use double quotes for string literals
Pos: 7:1793
Use double quotes for string literals
Pos: 7:1801
Use double quotes for string literals
Pos: 45:1874
Use double quotes for string literals
Pos: 26:1904
Use double quotes for string literals
Pos: 36:1981
Use double quotes for string literals
Pos: 25:1982
Use double quotes for string literals
Pos: 46:1991
Use double quotes for string literals
Pos: 36:2003
Use double quotes for string literals
Pos: 43:2005
Use double quotes for string literals
Pos: 7:2053
Use double quotes for string literals
Pos: 26:2070
Use double quotes for string literals
Pos: 33:2080
Use double quotes for string literals
Pos: 43:2093
Use double quotes for string literals
Pos: 36:2117
Use double quotes for string literals
Pos: 26:2118
Use double quotes for string literals
Pos: 26:2148
Use double quotes for string literals
Pos: 9:2154
Use double quotes for string literals
Pos: 9:2159
Use double quotes for string literals
Pos: 33:2167
Use double quotes for string literals
Pos: 35:2193

Software analysis result:
This software reported many false positive results and some were informational issues.

So, those issues can be safely ignored.

