
Project: TrueUSD (TUSD) Token
Website: tusd.io
Platform: Ethereum
Language: Solidity
Date: March 2nd, 2024

https://tusd.io/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 27

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the TrueUSD token
smart contract from tusd.io was audited extensively. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on March 2nd, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● This Solidity code defines the TrueUSD (TUSD) token contract, an

ERC20-compliant token with additional functionalities such as burning, blacklisting,

and proof of reserve. Let's break down the main components and functionalities:

○ Interfaces:
■ IERC20: Defines the standard ERC20 token interface.
■ ITrueCurrency: Interface for TrueCurrency token functionalities like

minting, burning, blacklisting, etc.

■ AggregatorV3Interface: Interface for Chain Link Price Feeds used

for proof of reserve.

○ Libraries:
■ SafeMath: Library for safe mathematical operations to prevent

overflows and underflows.

■ Address: Library to check if an address is a contract and handle

low-level calls.

○ ProxyStorage: Contract to store common state variables and mappings

used by proxy contracts.

○ ClaimableOwnable: Contract providing functionality for ownership transfer.
○ ProxyStorage: Contract to store common state variables and mappings

used by proxy contracts.

○ ERC20: Abstract contract implementing the ERC20 standard token

functionality.

○ ReclaimerToken: Abstract contract extending ERC20 with functionality to

reclaim ETH and ERC20 tokens stuck in the contract.

○ BurnableTokenWithBounds: Abstract contract extending ReclaimerToken

with functionality for burning tokens within specified bounds.

○ TrueCurrency: Abstract contract extending BurnableTokenWithBounds with

additional functionalities like blacklisting, minting, and transferring with

specific checks.

○ TrueCurrencyWithProofOfReserve: Abstract contract extending

TrueCurrency with proof of reserve functionality. It ensures that token minting

is backed by sufficient reserves based on a Chain Link price feed.

○ TrueUSD: The main TrueUSD token contract, implementing the

TrueCurrencyWithProofOfReserve contract and specifying the token name,

symbol, and decimals.

● The TrueUSD token contract includes features such as blacklisting addresses,

burning tokens within specified bounds, and ensuring that token minting is backed

by sufficient reserves based on a Chain Link price feed.

● TrueUSD is the top-level ERC20 contract, with features like blacklist and

redemption addresses, and a Proof-of-Reserves feed check.

● It is owned by the token controller, responsible for minting and admin.

● The platform tracks coin burning and returns the equivalent amount of money.

Audit scope

Name Code Review and Security Analysis Report for
TrueUSD (TUSD) Token Smart Contract

Platform Ethereum

File TrueUSD.sol

Smart Contract Code 0xb650eb28d35691dd1bd481325d40e65273844f9b

Audit Date March 2nd, 2024

https://etherscan.io/address/0xb650eb28d35691dd1bd481325d40e65273844f9b#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: TrueUSD

● Symbol: TUSD

● Decimals: 18

● Rounding: 2

YES, This is valid.

Ownership control:
● Sets a new feed address.

● Sets the feed's heartbeat expectation.

● Enable / Disable the Proof of Reserve check.

● Set blacklisted status for the account.

● Set canBurn status for the account.

● Change the minimum and maximum amount that can be

burned at once _to address to send ether balance to.

● Send all ether balance in the contract to another

address.

● Send all token balances of an arbitrary erc20 token in

the contract to another address.

● The current owner can transfer ownership of the

contract to a new account.

YES, This is valid.
We suggest
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart contract

is “Secured”. Also, this contract contains owner control, which does not make it fully

decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is

based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable

vulnerabilities are presented in the Audit Overview section. A general overview is

presented in the AS-IS section and all identified issues can be found in the Audit overview

section.

We found 0 critical, 0 high, 0 medium, 1 low, and 4 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Yes

Blacklist Check Yes

Can Mint? Yes

Is it a Proxy? Yes

Can Take Ownership? Not Detected

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract file. Smart contracts contain Libraries, Smart

contracts, inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in TUSD Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the TUSD Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a TUSD Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that are

based on well known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/address/0xb650eb28d35691dd1bd481325d40e65273844f9b#code

AS-IS overview

TrueUSD.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 decimals write Passed No Issue
3 rounding write Passed No Issue
4 name write Passed No Issue
5 symbol write Passed No Issue
6 _mint internal Timestamp issue Refer Audit

Findings
7 setChainReserveFeed external access only Owner No Issue
8 setChainReserveHeartbeat external access only Owner No Issue
9 disableProofOfReserve external access only Owner No Issue
10 enableProofOfReserve external access only Owner No Issue
11 mint external access only Owner No Issue
12 setBlacklisted external access only Owner No Issue
13 setCanBurn external access only Owner No Issue
14 _transfer internal Passed No Issue
15 _approve internal Passed No Issue
16 _burn internal Passed No Issue
17 isRedemptionAddress internal Passed No Issue
18 burn external Passed No Issue
19 setBurnBounds external access only Owner No Issue
20 _burn internal Passed No Issue
21 reclaimEther external Passed No Issue
22 reclaimToken external Passed No Issue
23 name write Passed No Issue
24 symbol write Passed No Issue
25 decimals write Passed No Issue
26 totalSupply read Passed No Issue
27 balanceOf read Passed No Issue
28 transfer write Passed No Issue
29 allowance read Passed No Issue
30 approve write Passed No Issue
31 transferFrom write Passed No Issue
32 increaseAllowance write Passed No Issue
33 decreaseAllowance write Passed No Issue
34 _transfer internal Passed No Issue
35 _mint internal Passed No Issue
36 _burn internal Passed No Issue
37 _approve internal Passed No Issue
38 _beforeTokenTransfer internal Passed No Issue
39 onlyOwner modifier Passed No Issue
40 onlyPendingOwner modifier Passed No Issue

41 transferOwnership external Critical operation
lacks event log,

Missing zero check

Refer Audit
Findings

42 claimOwnership external access only Pending
Owner

No Issue

43 _msgSender internal Passed No Issue
44 _msgData internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log: ClaimableOwnable.sol

function transferOwnership(address newOwner) external onlyOwner {

pendingOwner = newOwner;

}

Detecting missing events for critical access control parameters transferOwnership() has no

event, so it is difficult to track off-chain owner changes.

Resolution: We suggest emitting an event for critical parameter changes.

Very Low / Informational / Best practices:
(1) Timestamp issue: TrueCurrencyWithProofOfReserve.sol

Dangerous usage of block.timestamp. block.timestamp can be manipulated by miners.

Resolution: We suggest avoiding relying on block.timestamp.

(2) Error message for require is too long:

BurnableTokenWithBounds.sol

Ethereum has a gas limit for each block. This limit includes the gas used by all

transactions and contract executions within that block. When a required statement fails, it

results in an exception, and the error message, along with the gas used up to that point, is

included in the transaction's revert message.

Resolution: We suggest writing short and clear messages in the required statements.

(3) Use the latest solidity version: TrueUSD.sol

Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use versions greater than 0.8.14.

(4) Missing zero check: ClaimableOwnable.sol

Detects missing zero address validation.

Resolution: We suggest checking that the address is not zero.

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet's private key is compromised, then it would create trouble. Following are

Admin functions:

TrueCurrencyWithProofOfReserve.sol

● setChainReserveFeed: Sets a new feed address by the owner.

● setChainReserveHeartbeat: Sets the feed's heartbeat expectation by the owner.

● disableProofOfReserve: Disable Proof of Reserve check by the owner.

● enableProofOfReserve: Enable Proof of Reserve check by the owner.

TrueCurrency.sol

● mint: Mint tokens by the owner.

● setBlacklisted: Set blacklisted status for the account by the owner.

● setCanBurn: Set the canBurn status for the account by the owner.

BurnableTokenWithBounds.sol

● setBurnBounds: Change the minimum and maximum amount that can be burned at

once _to address to send ether balance to by the owner.

ReclaimerToken.sol

● reclaimEther: Send all ether balance in the contract to another address by the

owner.

● reclaimToken: Send all token balance of an arbitrary erc20 token in the contract to

another address by the owner.

ClaimableOwnable.sol

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

● claimOwnership: Allows the pending owner address to finalize the transfer by the

pending owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 1 low and 4 informational

issues in the smart contract. And those issues are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://etherscan.io/address/0xb650eb28d35691dd1bd481325d40e65273844f9b#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - TrueUSD (TUSD) Token

TrueUSD Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> TrueUSD.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

TrueUSD.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

TrueUSD.sol

Error message for require is too long
Pos: 9:262
Error message for require is too long
Pos: 9:418
Error message for require is too long
Pos: 9:475
Error message for require is too long
Pos: 9:500
Error message for require is too long
Pos: 9:524
Explicitly mark visibility of state
Pos: 5:568
Explicitly mark visibility of state
Pos: 5:570
Explicitly mark visibility of state
Pos: 5:571
Explicitly mark visibility of state
Pos: 5:573
Explicitly mark visibility of state
Pos: 5:581
Explicitly mark visibility of state
Pos: 5:583
Explicitly mark visibility of state
Pos: 5:584
Explicitly mark visibility of state
Pos: 5:586
Explicitly mark visibility of state
Pos: 5:588
Explicitly mark visibility of state
Pos: 5:590
Explicitly mark visibility of state
Pos: 5:591
Explicitly mark visibility of state
Pos: 5:592
Explicitly mark visibility of state
Pos: 5:595
Explicitly mark visibility of state
Pos: 5:596
Explicitly mark visibility of state
Pos: 5:597
Explicitly mark visibility of state
Pos: 5:605
Explicitly mark visibility of state

Pos: 5:606
Explicitly mark visibility of state
Pos: 5:608
Error message for require is too long
Pos: 9:897
Error message for require is too long
Pos: 9:898
Error message for require is too long
Pos: 9:938
Error message for require is too long
Pos: 9:961
Error message for require is too long
Pos: 9:1095
Explicitly mark visibility of state
Pos: 5:1145
Explicitly mark visibility of state
Pos: 5:1146
Error message for require is too long
Pos: 9:1387
Error message for require is too long
Pos: 9:1391
Error message for require is too long
Pos: 9:1395
Avoid making time-based decisions in business logic
Pos: 17:1395
Avoid making time-based decisions in business logic
Pos: 17:1398
Error message for require is too long
Pos: 9:1403
Error message for require is too long
Pos: 9:1445
Error message for require is too long
Pos: 9:1446
Compiler version 0.6.10 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1455
Explicitly mark visibility of state
Pos: 5:1465
Explicitly mark visibility of state
Pos: 5:1466

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

