
Project: VeChain Token
Website: vechain.org
Platform: Ethereum
Language: Solidity
Date: April 8th, 2024

https://www.vechain.org

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 24

Our Methodology ………………………………………………………………………………... 25

Disclaimers ………………………………………………………………………………………. 27

Appendix

● Code Flow Diagram ……………………………………………………………………... 28

● Slither Results Log ………………………………………………………………………. 29

● Solidity static analysis ….……………………………………………………………….. 31

● Solhint Linter …………………………………………………………………….……….. 33

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the smart contracts
of VeChain Token from vechain.org were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 8th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The VEN token contract adheres to the ERC20 standard.

● The VENSale contract is utilized for the sale and distribution of VEN tokens.

● The VeChain (VEN) Token is a standard smart contract with functions such as buy,

exchange rate, finalize, mint token, seal, and VENSale.

● VEN Token Contract: This contract implements the ERC20 interface and additional

functionality specific to the VEN token. It includes features like claiming bonuses,

minting tokens, offering bonuses, sealing the contract, etc. Notable functions

include mint, seal, offerBonus, claimBonus, transfer, and transferFrom.

● VENSale Contract: This contract manages the sale of VEN tokens. It defines

various stages (Stage enum) such as Created, Initialized, Early, Normal, Closed,

and Finalized. The sale has a start and end time (startTime and endTime) and

includes logic for calculating the exchange rate (exchange-rate), determining the

current stage (stage), buying tokens (buy), offering tokens to channels

(offerToChannel), initializing the sale (initialize), and finalizing the sale (finalize).

● Overall, this contract facilitates the sale of VEN tokens in different stages, manages

ownership and token functionality, and ensures safe mathematical operations. It

adheres to the ERC20 standard for token functionality.

Audit scope

Name Code Review and Security Analysis Report for
VeChain Token Smart Contract

Platform Ethereum

File VEN.sol

Smart Contract Code 0xd850942ef8811f2a866692a623011bde52a462c1

Audit Date April 8th, 2024

https://etherscan.io/token/0xd850942ef8811f2a866692a623011bde52a462c1#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

VEN Contract Tokenomics:
● Name: VeChain Token

● Symbol: VEN

● Decimals: 18

● Total supply: 1 billion

Ownership control:
● Mint tokens and assign them to someone.

● Offer a bonus to raw token holders.

● Set owner to zero address, disable mint,

and enable token transfer.

YES, This is valid.
We suggest renouncing
ownership once the ownership
functions are not needed. This is
to make the smart contract 100%
decentralized.

VENSale Contract Tokenomics:
● Total supply: 1 billion VEN

● 9% for private ICO.

● 23% for commercial plans.

● 5% for the team.

● 22% for operations.

● Non-Public Supply: 59%

● Public Supply: 41%

● Each account can be bought once in 30

minutes.

● Maximum Buy Eth Amount: 30 ether

● The early stage Lasts 3 days

Ownership control:
● Manually offer tokens to the channel.

● Initialize to prepare for sale.

● Finalize stage.

YES, This is valid.
We suggest renouncing
ownership once the ownership
functions are not needed. This is
to make the smart contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 1 low, and 10 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Moderated
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? Yes

Is it a Proxy? Not Detected

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in VeChain Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the VeChain Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a VeChain Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry-standard open-source projects.

Apart from libraries, their functions are not used in external smart contract calls.

https://etherscan.io/token/0xd850942ef8811f2a866692a623011bde52a462c1#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Remove constructor Refer Audit

Findings
2 VENSale write Explicitly mark visibility in the

function
Refer Audit
Findings

3 exchangeRate write Explicitly mark visibility in the
function

Refer Audit
Findings

4 blockTime write Explicitly mark visibility in the
function

Refer Audit
Findings

5 stage write Explicitly mark visibility in the
function

Refer Audit
Findings

6 isContract internal Passed No Issue
7 buy write Missing required error

message, Explicitly mark
visibility in function

Refer Audit
Findings

8 officialSold write Explicitly mark visibility in the
function

Refer Audit
Findings

9 channelsSold write Explicitly mark visibility in the
function

Refer Audit
Findings

10 offerToChannel write Missing required error
message, Explicitly mark

visibility in function,
Centralization

Refer Audit
Findings

11 initialize write Missing required error
message, Explicitly mark

visibility in function,
Centralization

Refer Audit
Findings

12 finalize write Missing required error
message, Explicitly mark

visibility in function

Refer Audit
Findings

13 receiveApproval write Explicitly mark visibility in the
function

Refer Audit
Findings

14 VEN write Explicitly mark visibility in
function, Centralization, and
Code Contains Empty Blocks

Refer Audit
Findings

15 totalSupply write Explicitly mark visibility in the
function

Refer Audit
Findings

16 isSealed write Explicitly mark visibility in the
function

Refer Audit
Findings

17 lastMintedTimestamp write Explicitly mark visibility in the
function

Refer Audit
Findings

18 claimBonus internal Missing required error
message

Refer Audit
Findings

19 balanceOf write Explicitly mark visibility in the
function

Refer Audit
Findings

20 transfer write Missing required error
message, Explicitly mark

visibility in function

Refer Audit
Findings

21 transferFrom write Missing required error
message, Explicitly mark

visibility in function

Refer Audit
Findings

22 approve write Explicitly mark visibility in the
function

Refer Audit
Findings

23 approveAndCall write Explicitly mark visibility in the
function

Refer Audit
Findings

24 allowance write Explicitly mark visibility in the
function

Refer Audit
Findings

25 mint write Explicitly mark visibility in
function, Unlimited token

minting

Refer Audit
Findings

26 offerBonus write Explicitly mark visibility in
function, Centralization

Refer Audit
Findings

27 seal write Explicitly mark visibility in
function, Centralization

Refer Audit
Findings

28 totalSupply write Explicitly mark visibility in the
function

Refer Audit
Findings

29 balanceOf write Explicitly mark visibility in the
function

Refer Audit
Findings

30 transfer write Explicitly mark visibility in the
function

Refer Audit
Findings

31 transferFrom write Explicitly mark visibility in the
function

Refer Audit
Findings

32 approve write Explicitly mark visibility in the
function

Refer Audit
Findings

33 allowance write Explicitly mark visibility in the
function

Refer Audit
Findings

34 onlyOwner modifier Missing required error
message

Refer Audit
Findings

35 Owned write Explicitly mark visibility in the
function

Refer Audit
Findings

36 setOwner write Missing zero address
validation, Explicitly mark

visibility in function,
Centralization

Refer Audit
Findings

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

(1) Unlimited token minting: VEN.sol

// Mint tokens and assign to someone

function mint(address _owner, uint256 _amount, bool _isRaw,

uint32 timestamp) onlyOwner{

if (_isRaw) {

accounts[_owner].rawTokens =

_amount.add(accounts[_owner].rawTokens).toUINT112();

supplies.rawTokens =

_amount.add(supplies.rawTokens).toUINT128();

} else {

accounts[_owner].balance =

_amount.add(accounts[_owner].balance).toUINT112();

}

accounts[_owner].lastMintedTimestamp = timestamp;

supplies.total = _amount.add(supplies.total).toUINT128();

Transfer(0, _owner, _amount);

}

Token minting without any maximum limit is considered inappropriate for tokenomics.

Resolution:We recommend placing some limit on token minting to mitigate this issue.

Very Low / Informational / Best practices:
(1) Use the latest solidity version: Owned.sol

pragma solidity ^0.4.13;

Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use versions greater than 0.8.25.

(2) Missing required error message:

Owned.sol

modifier onlyOwner() {

require(msg.sender == owner);

_;

}

VENSale.sol
● buy

● offerToChannel

● initialize

● finalize

VEN.sol

function transferFrom(

address _from,

address _to,

uint256 _amount

) returns (bool success) {

require(isSealed());

// implicitly claim bonus for both sender and receiver

claimBonus(_from);

claimBonus(_to);

// according to VEN's total supply, never overflow here

if (accounts[_from].balance >= _amount

&& allowed[_from][msg.sender] >= _amount

&& _amount > 0) {

accounts[_from].balance -= uint112(_amount);

allowed[_from][msg.sender] -= _amount;

accounts[_to].balance =

_amount.add(accounts[_to].balance).toUINT112();

Transfer(_from, _to, _amount);

return true;

} else {

return false;

}

}

function transfer(address _to, uint256 _amount) returns (bool

success) {

require(isSealed());

// implicitly claim bonus for both sender and receiver

claimBonus(msg.sender);

claimBonus(_to);

// according to VEN's total supply, never overflow here

if (accounts[msg.sender].balance >= _amount

&& _amount > 0) {

accounts[msg.sender].balance -= uint112(_amount);

accounts[_to].balance =

_amount.add(accounts[_to].balance).toUINT112();

Transfer(msg.sender, _to, _amount);

return true;

} else {

return false;

}

}

// Claim bonus by raw tokens

function claimBonus(address _owner) internal{

require(isSealed());

if (accounts[_owner].rawTokens != 0) {

uint256 realBalance = balanceOf(_owner);

uint256 bonus = realBalance

.sub(accounts[_owner].balance)

.sub(accounts[_owner].rawTokens);

accounts[_owner].balance = realBalance.toUINT112();

accounts[_owner].rawTokens = 0;

if(bonus > 0){

Transfer(this, _owner, bonus);

}

}

}

There is no error message set in the required condition.

Resolution: We suggest setting relevant error messages to identify the failure of the

transaction, Otherwise the user can't identify the actual problem of why the transaction is

not successful.

(3) Missing zero address validation: Owned.sol

function setOwner(address _newOwner) onlyOwner {

owner = _newOwner;

}

Detects missing zero address validation.

Resolution:We suggest first Checking that the address is not zero.

(4) Explicitly mark visibility in function:

Token.sol
● totalSupply

● balanceOf

● transfer

● transferFrom

● approve

● allowance

Owned.sol

function setOwner(address _newOwner) onlyOwner {

owner = _newOwner;

}
function Owned() {

owner = msg.sender;

}

VENSale.sol

/// @notice entry to buy tokens

function () payable {

buy();

}

/// @notice entry to buy tokens

function buy() payable {

// reject contract buyer to avoid breaking interval limit

require(!isContract(msg.sender));

require(msg.value >= 0.01 ether);

● VENSale

● exchangeRate

● blockTime

● stage

● officialSold

● channelsSold

● offerToChannel

● initialize

● finalize

VEN.sol
● VEN

● totalSupply

● isSealed

● lastMintedTimestamp

● balanceOf

● transfer

● transferFrom

● approve

● approveAndCall

● allowance

● mint

● offerBonus

● seal

ApprovalReceiver.sol

function receiveApproval(address _from, uint256 _value, address

_tokenContract, bytes _extraData);

In the code under review, several functions lack explicit visibility modifiers, such as public,

internal, external, or private, which can lead to unexpected behavior and may pose

security risks.

Resolution: Suggest adding explicit visibility modifiers to all functions in the code,

specifying the appropriate level of visibility based on their intended use.

(5) Centralization:

Some functions of this smart contract are only called by Onlyowner

VEN.sol
● mint

● offerBonus

● seal

VENSale.sol
● offerToChannel

● initialize

● finalize

Owned.sol

function setOwner(address _newOwner) onlyOwner {

owner = _newOwner;

}

● setOwner

Resolution:We suggest making your smart contract 100% decentralized.

(6) Code Contains Empty Blocks: VEN.sol

// Constructor

function VEN() {

}

During the code review process, it was identified that the code includes empty blocks,

which are sections of code enclosed by curly braces {} that do not contain any statements

or logic. These empty blocks serve no functional purpose and should be addressed.

Resolution: Suggest removing all empty blocks from the code to improve code quality and

clarity.

(7) Missing Error Message for revert function: VEN.sol

// Send back ether sent to me

function () {

revert();

}

During the code review process, it was observed that the default revert() function is used

without an accompanying error message. Reverting without an error message can make

debugging and error handling challenging both for developers and users of the contract.

Resolution: Suggest adding informative error messages to revert() statements to provide

a clear context for transaction failures.

(8) Explicit Visibility for State Variables Warning:

VEN.sol

Supplies supplies;

// Balances for each account

mapping(address => Account) accounts;

// Owner of account approves the transfer of an amount to another

account

mapping(address => mapping(address => uint256)) allowed;

// bonus that can be shared by raw tokens

uint256 bonusOffered;

VENSale.sol

bool initialized;

bool finalized;

SoldOut soldOut;

uint256 constant privateSupply = totalSupply * 9 / 100; // 9% for

private ICO

uint256 constant commercialPlan = totalSupply * 23 / 100; // 23%

for commercial plan

uint256 constant reservedForTeam = totalSupply * 5 / 100; // 5%

for team

uint256 constant reservedForOperations = totalSupply * 22 / 100; //

22 for operations

The warning is related to the visibility of state variables in your Solidity code.

Resolution: We recommend updating the code to explicitly mark the visibility of state

variables using the internal or public keyword, depending on the intended visibility.

(9) Solidity constants naming conventions: VEN.sol

Constants are defined in lowercase.

Resolution: Constants should be named with all capital letters with underscores

separating words.

(10) Remove constructor: VEN.sol

// Constructor

function VEN() {

}

If no parameters are passed to the constructor then no need to define them, if you don’t

define one explicitly, Solidity provides a default constructor that simply does nothing.

Resolution: Suggest to remove empty constructor.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

VEN.sol
● mint: Mint tokens assigned to someone by the owner.

● offerBonus: Offer a bonus to raw tokens held by the owner.

● seal: Set owner to zero address, disable mint, and enable token transfer by the

current owner.

VENSale.sol
● offerToChannel: Manually offer tokens to the channel by the owner.

● finalize: finalize by the owner.

● initialize: initialize to prepare for sale by the owner.

Owned. sol
● setOwner: The current owner can set the new owner's address.

To make the smart contract 100% decentralized, we suggest renouncing ownership of the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 1 low and 10 informational

issues in the smart contracts. And those issues are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0xd850942ef8811f2a866692a623011bde52a462c1#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - VeChain Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> VEN.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

VEN.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

VEN.sol

Compiler version ^0.4.13 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:4
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:10
Provide an error message for require
Pos: 9:15
Explicitly mark visibility in function
Pos: 5:19
Explicitly mark visibility in function
Pos: 5:85
Explicitly mark visibility in function
Pos: 5:89
Explicitly mark visibility in function
Pos: 5:95
Explicitly mark visibility in function
Pos: 5:102
Explicitly mark visibility in function
Pos: 5:108
Explicitly mark visibility in function
Pos: 5:113
Constant name must be in capitalized SNAKE_CASE
Pos: 5:124
Constant name must be in capitalized SNAKE_CASE
Pos: 5:125
Constant name must be in capitalized SNAKE_CASE
Pos: 5:126
Explicitly mark visibility of state
Pos: 5:136
Explicitly mark visibility of state
Pos: 5:152
Explicitly mark visibility of state
Pos: 5:155
Explicitly mark visibility of state
Pos: 5:158
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:161
Code contains empty blocks
Pos: 20:161
Explicitly mark visibility in function
Pos: 5:164
When fallback is not payable you will not be able to receive ether

Pos: 5:169
Explicitly mark visibility in function
Pos: 5:169
Provide an error message for revert
Pos: 9:170
Explicitly mark visibility in function
Pos: 5:174
Explicitly mark visibility in function
Pos: 5:178
Provide an error message for require
Pos: 9:184
Explicitly mark visibility in function
Pos: 5:200
Explicitly mark visibility in function
Pos: 5:218
Provide an error message for require
Pos: 9:219
Explicitly mark visibility in function
Pos: 5:243
Provide an error message for require
Pos: 9:248
Explicitly mark visibility in function
Pos: 5:270
Explicitly mark visibility in function
Pos: 5:277
Explicitly mark visibility in function
Pos: 5:289
Explicitly mark visibility in function
Pos: 5:294
Explicitly mark visibility in function
Pos: 5:309
Explicitly mark visibility in function
Pos: 5:316
Explicitly mark visibility in function
Pos: 5:322
Constant name must be in capitalized SNAKE_CASE
Pos: 5:347
Explicitly mark visibility of state
Pos: 5:349
Constant name must be in capitalized SNAKE_CASE
Pos: 5:349
Explicitly mark visibility of state
Pos: 5:350
Constant name must be in capitalized SNAKE_CASE
Pos: 5:350
Explicitly mark visibility of state
Pos: 5:351
Constant name must be in capitalized SNAKE_CASE
Pos: 5:351
Explicitly mark visibility of state
Pos: 5:352
Constant name must be in capitalized SNAKE_CASE
Pos: 5:352
Constant name must be in capitalized SNAKE_CASE
Pos: 5:355
Constant name must be in capitalized SNAKE_CASE
Pos: 5:357
Constant name must be in capitalized SNAKE_CASE
Pos: 5:360

Constant name must be in capitalized SNAKE_CASE
Pos: 5:361
Explicitly mark visibility of state
Pos: 5:374
Explicitly mark visibility of state
Pos: 5:376
Constant name must be in capitalized SNAKE_CASE
Pos: 5:376
Explicitly mark visibility of state
Pos: 5:377
Constant name must be in capitalized SNAKE_CASE
Pos: 5:377
Explicitly mark visibility of state
Pos: 5:379
Constant name must be in capitalized SNAKE_CASE
Pos: 5:379
Explicitly mark visibility of state
Pos: 5:380
Constant name must be in capitalized SNAKE_CASE
Pos: 5:380
Explicitly mark visibility of state
Pos: 5:382
Explicitly mark visibility of state
Pos: 5:384
Explicitly mark visibility of state
Pos: 5:385
Constant name must be in capitalized SNAKE_CASE
Pos: 5:387
Constant name must be in capitalized SNAKE_CASE
Pos: 5:388
Constant name must be in capitalized SNAKE_CASE
Pos: 5:389
Explicitly mark visibility of state
Pos: 5:391
Explicitly mark visibility of state
Pos: 5:392
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:394
Explicitly mark visibility in function
Pos: 5:400
Explicitly mark visibility in function
Pos: 5:411
Avoid making time-based decisions in your business logic
Pos: 23:412
Explicitly mark visibility in function
Pos: 5:417
Visibility modifier must be first in list of modifiers
Pos: 49:451
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:454
Explicitly mark visibility in function
Pos: 5:461
Explicitly mark visibility in function
Pos: 5:466
Provide an error message for require
Pos: 9:468
Provide an error message for require
Pos: 9:469

Provide an error message for require
Pos: 9:473
Provide an error message for require
Pos: 9:475
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:497
Explicitly mark visibility in function
Pos: 5:509
Explicitly mark visibility in function
Pos: 5:514
Explicitly mark visibility in function
Pos: 5:519
Provide an error message for require
Pos: 9:522
Provide an error message for require
Pos: 9:527
Explicitly mark visibility in function
Pos: 5:543
Provide an error message for require
Pos: 9:547
Provide an error message for require
Pos: 9:550
Provide an error message for require
Pos: 9:552
Provide an error message for require
Pos: 9:553
Explicitly mark visibility in function
Pos: 5:579
Provide an error message for require
Pos: 9:581
Event name must be in CamelCase
Pos: 5:595
Event name must be in CamelCase
Pos: 5:596
Event name must be in CamelCase
Pos: 5:598

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

