
Project: Wrapped Ton Coin
Website: ton.org
Platform: Ethereum
Language: Solidity
Date: May 12th, 2024

https://ton.org

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..………………………………………………………………………..8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Wrapped TON
Coin smart contracts from ton.org were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 12th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● TON is a decentralized and open network, created by the community using a

technology designed by Telegram.

● This Solidity code defines a bridge contract that facilitates the transfer of tokens

between the Ethereum and TON (Telegram Open Network) networks. Let's break

down the key components and functionalities of the contract:

● Here's a brief overview of the key components and functionalities of the provided

code:

○ Interfaces: The TonUtils interface defines structs for TON addresses and

transactions, as well as a struct for signature data. The IERC20 interface

defines the standard ERC20 token functions.

○ ERC20 Token: The ERC20 contract implements the standard ERC20 token

functionality with functions for transferring tokens, managing allowances, and

emitting events.

○ Bridge Interface: The BridgeInterface interface extends TonUtils and

declares functions for voting on various actions such as minting tokens,

updating the set of oracles, and switching burn status.

○ Signature Checker: The SignatureChecker contract provides functions for

verifying ECDSA signatures and generating unique IDs for different types of

actions.

○ Wrapped TON: The WrappedTON contract extends ERC20 and TonUtils,

adding additional functionalities for minting and burning tokens, specifically

for interactions with the TON network.

○ Bridge: The Bridge contract inherits from SignatureChecker and

WrappedTON, implementing the bridge functionality. It maintains a set of

oracles, allows for voting on different actions, and executes the actions

based on the received votes.

● The contract is without any other custom functionality and without any ownership

control, which makes it truly decentralized.

● Overall, the code aims to provide a decentralized bridge between Ethereum and

TON networks, allowing for token swaps and governance through a voting

mechanism involving a set of oracles.

Audit scope

Name Code Review and Security Analysis Report for Ton
Coin Smart Contract

Platform Ethereum

File Bridge.sol

Smart Contract Code 0x582d872a1b094fc48f5de31d3b73f2d9be47def1

Audit Date May 12th, 2024

https://etherscan.io/token/0x582d872a1b094fc48f5de31d3b73f2d9be47def1#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Wrapped TON Coin

● Symbol: TONCOIN

● Decimals: 9

YES, This is valid.

Ownership Control:
● There are no owner functions, which

makes it 100% decentralized.

● Oracles are part of several transactions

allowing execution of some functions in a

decentralized way.

YES, This is valid.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. This token contract does not have any ownership control, hence
it is 100% decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 2 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? Yes

Is it Proxy? No

Can Take Ownership? Not Detected

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Ton Coin are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

another contract in the Ton Coin.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Ton Coin smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x582d872a1b094fc48f5de31d3b73f2d9be47def1#code

AS-IS overview

Bridge Contract: Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 generalVote internal Infinite loops, Out of

Gas issue
Refer Audit
Findings

3 voteForMinting write Function input
parameters lack of

check

Refer Audit
Findings

4 voteForNewOracleSet write Function input
parameters lack of

check

Refer Audit
Findings

5 voteForSwitchBurn write Passed No Issue
6 executeMinting internal Passed No Issue
7 updateOracleSet internal Function input

parameters lack of
check, Infinite loops,
Out of Gas issue

Refer Audit
Findings

8 getFullOracleSet read Passed No Issue
9 checkSignature write Passed No Issue
10 getSwapDataId write Passed No Issue
11 getNewSetId write Passed No Issue
12 getNewBurnStatusId write Passed No Issue
13 mint internal Passed No Issue
14 burn external Passed No Issue
15 burnFrom external Passed No Issue
16 decimals write Passed No Issue
17 checkSignature write Passed No Issue
18 getSwapDataId write Passed No Issue
19 getNewSetId write Passed No Issue
20 getNewBurnStatusId write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

function updateOracleSet(int oracleSetHash, address[] memory

newSet) internal {

uint oldSetLen = oraclesSet.length;

for(uint i = 0; i < oldSetLen; i++) {

isOracle[oraclesSet[i]] = false;

}

oraclesSet = newSet;

uint newSetLen = oraclesSet.length;

for(uint i = 0; i < newSetLen; i++) {

require(!isOracle[newSet[i]], "Duplicate oracle in Set");

isOracle[newSet[i]] = true;

}

emit NewOracleSet(oracleSetHash, newSet);

}

function voteForNewOracleSet(int oracleSetHash, address[] memory

newOracles, Signature[] memory signatures) override public {

bytes32 _id = getNewSetId(oracleSetHash, newOracles);

require(newOracles.length > 2, "New set is too short");

generalVote(_id, signatures);

updateOracleSet(oracleSetHash, newOracles);

}

function voteForMinting(SwapData memory data, Signature[] memory

signatures) override public {

bytes32 _id = getSwapDataId(data);

generalVote(_id, signatures);

executeMinting(data);

}

In functions like voteForNewOracleSet, voteForSwitchBurn, and updateOracleSet, ensure

that input parameters are properly validated to prevent unexpected behavior or

manipulation.

Resolution: We suggest using validation, like for numerical variables that should be

greater than 0, and for address-type check variables that are not addressed (0). For

percentage-type variables, values should have some range, like a minimum of 0 and a

maximum of 100.

(2) Infinite loops, Out of Gas issue:

function updateOracleSet(int oracleSetHash, address[] memory

newSet) internal {

uint oldSetLen = oraclesSet.length;

for(uint i = 0; i < oldSetLen; i++) {

isOracle[oraclesSet[i]] = false;

}

oraclesSet = newSet;

uint newSetLen = oraclesSet.length;

for(uint i = 0; i < newSetLen; i++) {

require(!isOracle[newSet[i]], "Duplicate oracle in Set");

isOracle[newSet[i]] = true;

}

emit NewOracleSet(oracleSetHash, newSet);

}

function generalVote(bytes32 digest, Signature[] memory signatures)

internal {

require(signatures.length >= 2 * oraclesSet.length / 3, "Not

enough signatures");

require(!finishedVotings[digest], "Vote is already finished");

uint signum = signatures.length;

uint last_signer = 0;

for(uint i=0; i<signum; i++) {

address signer = signatures[i].signer;

require(isOracle[signer], "Unauthorized signer");

uint next_signer = uint(signer);

require(next_signer > last_signer, "Signatures are not

sorted");

last_signer = next_signer;

checkSignature(digest, signatures[i]);

}

finishedVotings[digest] = true;

}

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structures.

● generalVote() - signatures.length

● updateOracleSet() - oraclesSet.length

Very Low / Informational / Best practices:
(1) Potential Gas Limit Issues:

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop.

Resolution: Depending on the size of the oracle set and the number of signatures

required, the gas cost of executing functions like general vote could become prohibitive.

Ensure that gas limits are not exceeded, especially in loops and complex operations.

(2) Use the latest solidity version:

pragma solidity ^0.7.0;

Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use versions greater than 0.8.7.

(3) Missing SPDX license identifier:

Bridge.sol: Warning: SPDX license identifier not provided in source file.

Before publishing, consider adding a comment containing

"SPDX-License-Identifier: <SPDX-License>" to each source file. Use

"SPDX-License-Identifier: UNLICENSED" for non-open-source code. Please see

https://spdx.org for more information.

Solidity’s new specification requires a valid SPDX license identifier to be included in every

smart contract file.

Resolution: Please add a comment for the appropriate SPDX license identifier.

Centralization Risk

The Ton Coin smart contract does not have any ownership control, hence it is 100%
decentralized.

Therefore, there is no centralization risk.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 2 low and 3 informational

issues in the smart contracts. And those issues are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The Security State of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0x582d872a1b094fc48f5de31d3b73f2d9be47def1#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Ton Coin

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> Bridge.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

Bridge.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

Bridge.sol

Compiler version ^0.7.6 does not satisfy the ^0.5.8 semver
requirement
Pos: 2:3
Variable name must be in mixedCase
Pos: 9:9
Variable name must be in mixedCase
Pos: 9:13
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:118
Error message for require is too long
Pos: 9:218
Error message for require is too long
Pos: 9:257
Error message for require is too long
Pos: 9:278
Error message for require is too long
Pos: 9:279
Error message for require is too long
Pos: 9:284
Error message for require is too long
Pos: 9:322
Error message for require is too long
Pos: 9:327
Error message for require is too long
Pos: 9:348
Error message for require is too long
Pos: 9:349
Code contains empty blocks
Pos: 94:369
Error message for revert is too long
Pos: 15:406
Error message for revert is too long
Pos: 15:410
Error message for require is too long
Pos: 9:502
Variable name must be in mixedCase
Pos: 46:512
Variable name must be in mixedCase
Pos: 58:512
Variable name must be in mixedCase
Pos: 40:513
Variable name must be in mixedCase

Pos: 74:513
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:521
Variable name must be in mixedCase
Pos: 7:529
Variable name must be in mixedCase
Pos: 9:533

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

