@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Wrapped Ton Coin
Website: ton.org

Platform: Ethereum
Language: Solidity

DEI(H May 12th, 2024

https://ton.org

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
BUSINESS RISK ANAlYSIS ... 9
Code QUAIIRY ...eee e 10
DOCUMENTALION ... e 10
0 LY o) D T=T o= o [T T [T 10
ASHIS OVEIVIBW ..o e 11
Severity DefinitioNS ... 12
AUt FINAINGS ..o 13
@70 o T 1017 T o 18
(@ 18] g1/ 1= 1 ToTo (o] (oo VPP 19
DISCIAIMEIS ... e 21
Appendix
o Code FIOW Diagram ... 22
o Slither RESUIS LOG ...uviiiiiiii e 23
e Solidity staticanalysis ..., 24
® SOININt LNl .. 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

As part of EtherAuthority’s community smart contracts audit initiatives, the Wrapped TON
Coin smart contracts from ton.org were audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 12th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e TON is a decentralized and open network, created by the community using a
technology designed by Telegram.

e This Solidity code defines a bridge contract that facilitates the transfer of tokens
between the Ethereum and TON (Telegram Open Network) networks. Let's break
down the key components and functionalities of the contract:

e Here's a brief overview of the key components and functionalities of the provided
code:

o Interfaces: The TonUltils interface defines structs for TON addresses and
transactions, as well as a struct for signature data. The IERC20 interface
defines the standard ERC20 token functions.

o ERC20 Token: The ERC20 contract implements the standard ERC20 token
functionality with functions for transferring tokens, managing allowances, and
emitting events.

o Bridge Interface: The Bridgelnterface interface extends TonUtils and
declares functions for voting on various actions such as minting tokens,
updating the set of oracles, and switching burn status.

o Signature Checker: The SignatureChecker contract provides functions for
verifying ECDSA signatures and generating unique IDs for different types of
actions.

o Wrapped TON: The WrappedTON contract extends ERC20 and TonUtils,
adding additional functionalities for minting and burning tokens, specifically

for interactions with the TON network.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

o Bridge: The Bridge contract inherits from SignatureChecker and
WrappedTON, implementing the bridge functionality. It maintains a set of
oracles, allows for voting on different actions, and executes the actions

based on the received votes.

e The contract is without any other custom functionality and without any ownership
control, which makes it truly decentralized.

e Overall, the code aims to provide a decentralized bridge between Ethereum and
TON networks, allowing for token swaps and governance through a voting

mechanism involving a set of oracles.

Audit scope
Name Code Review and Security Analysis Report for Ton
Coin Smart Contract
Platform Ethereum
File Bridge.sol
Smart Contract Code 0x582d872a1b094fc48f5de31d3b73f2d9be4 7def1
Audit Date May 12th, 2024

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0x582d872a1b094fc48f5de31d3b73f2d9be47def1#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: Wrapped TON Coin
e Symbol: TONCOIN

e Decimals: 9

Ownership Control: YES, This is valid.
e There are no owner functions, which
makes it 100% decentralized.
e Oracles are part of several transactions
allowing execution of some functions in a

decentralized way.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, the Customer's solidity-based smart
contracts are “Secured”. This token contract does not have any ownership control, hence
it is 100% decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. A general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 2 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner-controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old

Integer overflow/underflow Passed

Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue
High consumption ‘for/while’ loop

High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Business Risk Analysis

Category Result
Buy Tax 0%
Sell Tax 0%
Cannot Buy No
Cannot Sell No
Max Tax 0%
Modify Tax Not Detected
Fee Check No
Is Honeypot Not Detected

Trading Cooldown

Not Detected

Can Pause Trade? No
Pause Transfer? Not Detected
Max Tax? No
Is it Anti-whale? Not Detected
Is Anti-bot? Not Detected
Is it a Blacklist? Not Detected
Blacklist Check No
Can Mint? Yes
Is it Proxy? No

Can Take Ownership?

Not Detected

Hidden Owner?

Not Detected

Self Destruction?

Not Detected

00 e 00O QO COQCOCQOQOCOCOCCCOVPYEYCOYCQOCOVVYTS

Auditor Confidence

High

Overall Audit Result: PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Ton Coin are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties/methods can be reused many times by

another contract in the Ton Coin.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Ton Coin smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are not well commented on. but the logic is
straightforward. So it is easy to quickly understand the programming flow as well as
complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies

As per our observation, the libraries used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0x582d872a1b094fc48f5de31d3b73f2d9be47def1#code

AS-IS overview

Bridge Contract: Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | generalVote internal Infinite loops, Out of Refer Audit

Gas issue Findings
3 | voteForMinting write Function input Refer Audit
parameters lack of Findings
check
4 | voteForNewOracleSet write Function input Refer Audit
parameters lack of Findings
check
5 | voteForSwitchBurn write Passed No Issue
6 | executeMinting internal Passed No Issue
7 | updateOracleSet internal Function input Refer Audit
parameters lack of Findings
check, Infinite loops,
Out of Gas issue
8 | getFullOracleSet read Passed No Issue
9 [checkSignature write Passed No Issue

10 | getSwapDatald write Passed No Issue
11 | getNewSetld write Passed No Issue
12 | getNewBurnStatusld write Passed No Issue
13 | mint internal Passed No Issue
14 | burn external Passed No Issue
15 | burnFrom external Passed No Issue
16 | decimals write Passed No Issue
17 | checkSignature write Passed No Issue
18 | getSwapDatald write Passed No Issue
19 | getNewSetld write Passed No Issue
20 | getNewBurnStatusld write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

updateOracleSet (oracleSetHash,
newSet) {
oldSetLen = oraclesSet.length;
(i =0; i < oldSetLen; i++) {
isOracle[oraclesSet[i]] = ;
}
oraclesSet = newSet;
newSetLen = oraclesSet.length;
i =0; i < newSetLen; i++) {
(!'isOracle[newSet[i]], "Duplicate oracle in Set");

isOracle[newSet[i]] = 2

NewOracleSet (oracleSetHash, newSet) ;

voteForNewOracleSet (oracleSetHash, []
newOracles, Signature][] signatures)
_id = getNewSetId(oracleSetHash, newOracles) ;

(newOracles.length > 2, "New set is too short");

generalVote(_id, signatures);

updateOracleSet (oracleSetHash, newOracles) ;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

voteForMinting (SwapData data, Signature]l]

signatures) {

_id = getSwapDatald(data) ;
generalVote(_id, signatures);

executeMinting (data) ;

In functions like voteForNewOracleSet, voteForSwitchBurn, and updateOracleSet, ensure
that input parameters are properly validated to prevent unexpected behavior or

manipulation.

Resolution: We suggest using validation, like for numerical variables that should be
greater than 0, and for address-type check variables that are not addressed (0). For
percentage-type variables, values should have some range, like a minimum of 0 and a

maximum of 100.

(2) Infinite loops, Out of Gas issue:

updateOracleSet (oracleSetHash,
{
oldSetlLen = oraclesSet.length;
(i =0; i < oldSetlLen; i++)
isOracle[oraclesSet[i]] = ;
}
oraclesSet = newSet;
newSetLen = oraclesSet.length;
i =0; i < newSetLen; i++) {
(!'isOracle[newSet[i]], "Duplicate oracle

isOracle[newSet[i]] = g

NewOracleSet (oracleSetHash, newSet) ;

generalVote (digest, Signature]] signatures)

{

(signatures.length >= 2 * oraclesSet.length / 3, "Not

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

enough signatures") ;
(!'finishedVotings[digest], "Vote is already finished") ;
signum = signatures.length;
last_signer = 0;
i=0; i<signum; i++) {
signer = signatures[i].signer;
(isOracle[signer], "Unauthorized signer") ;
next signer = (signer) ;
(next_signer > last signer, "Signatures are not

sorted") ;

last_signer = next_signer;

checkSignature (digest, signatures[i]) ;

}
finishedVotings[digest] =

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structures.

e generalVote() - signatures.length

e updateOracleSet() - oraclesSet.length

Very Low / Informational / Best practices:

(1) Potential Gas Limit Issues:

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: Depending on the size of the oracle set and the number of signatures
required, the gas cost of executing functions like general vote could become prohibitive.

Ensure that gas limits are not exceeded, especially in loops and complex operations.

(2) Use the latest solidity version:

Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use versions greater than 0.8.7.

(3) Missing SPDX license identifier:

Bridge.sol: Warning: SPDX license identifier not provided in source file.
Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use

"SPDX-License-Identifier: UNLICENSED" for non-open-source code. Please see

https://spdx.org for more information.

Solidity’s new specification requires a valid SPDX license identifier to be included in every

smart contract file.

Resolution: Please add a comment for the appropriate SPDX license identifier.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization Risk

The Ton Coin smart contract does not have any ownership control, hence it is 100%

decentralized.

Therefore, there is no centralization risk.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all
possible tests based on given objects as files. We observed 2 low and 3 informational
issues in the smart contracts. And those issues are not critical. So, it’s good to go for the

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The Security State of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://etherscan.io/token/0x582d872a1b094fc48f5de31d3b73f2d9be47def1#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of the systems we review and
aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and white
box penetration testing. We look at the project's website to get a high-level understanding
of what functionality the software under review provides. We then meet with the
developers to gain an appreciation of their vision of the software. We install and use the
relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, and then confirming the issue through code
analysis, live experimentation, or automated tests. Code analysis is the most tentative, and
we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ Bridge

Signature Checker
Bridgeinterface
Wirapped T OMN

< address oraclesSet
< address==hool isCracle
2 bytes32==hool finishedotings

@ O getFullOracleSet()

@ _ constructor_ ()

< generalvote()

@ wvoteForiMinting()

@ voteForMewOracleSet()
@ wvoteForSwitchBurn()
 executeMinting()
 updateOracleSet()

@ Bridgelnterface

Tonlitils

@ woteForMinting()
@ voteForMewOracleSet()
@ voteForSwitchBurn()

\.

@ SignatureChecker

Tonlitils

@ QecheckSignature()

@ QgetSwapDatald()

@ QgetMewSetld()

@ O getMewBurnStatusld()

| A

,

Code Flow Diagram - Ton Coin

@WrappedTON

ERC20
Tonltils

< kool allowBurn

< ity

@ burni)

@ burnFrom()
@ Qdecimals()

@I ERC20

[IERCZ0

address=>uiNt256 _balances
address=>mapping address=>uiNM256 _allowances

uirt256 _totalSupply
string _name
string _symbol

_ constructor__ ()
namel)
Qsymbol()
Ccdecimals()
totalSupply ()

A balanceOf()

transfer()
Qallowance)
approve)
transferFromi)
increasefllowance()
decreasebllowance()

eodc0o00OoO@ee®|00D0ODO

T _approvel)
< _bheforeTokenTransfer()

!

(T I;RCEG

@ QtotalSupply ()
@ Qbalancedf()
@ transfer()
@ Qallowance()
D approwvel)
@ transferFromi)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> Bridge.sol

entation#incorrect-ve

found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program
is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

Bridge.sol

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally
static analysis modules do not parse inline Assembly, this can lead to wrong
analysis results.

more

Pos: 397:10:

Gas costs:

Gas requirement of function Bridge.getFullOracleSet is infinite: If the gas
requirement of a function is higher than the block gas Limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 578:4:

Constant/View/Pure functions:

SignatureChecker.getNewBurnStatusld(bool,int256) : Is constant but potentially
should not be.
more

Pos: 452:4:

Similar variable names:
Bridge.generalVote(bytes32,struct TonUtils.Signature[]) : Variables have very

similar names "signum” and "signer".
Pos: 529:6:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

No return:

IERC20.transferFrom(address,address,uint256): Defines a return type but never
explicitly returns a value.
Pos: 84:4:

Guard conditions:

Use "

as
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.

sert(x)" if you never ever want x to be false, not in any circumstance

invalid input or a failing external component.
more

Pos: 573:8:

Data truncated:

Division of integer values yields an integer value again. That means eg. 10 /100
= 0 instead of 0.1 since the result is an integer again. This does not hold for

division of (only) literal values since those vyield rational constants.

Pos: 527:35:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming
errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

Bridge.sol

Compiler version "0.7.6 does not satisfy the 70.5.8 semver
requirement

Pos: 2:3

Variable name must be in mixedCase
Pos: 9:9

Variable name must be in mixedCase
Pos: 9:13

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:118

Error message for require is too long
Pos: 9:218

Error message for require is too long
Pos: 9:257

Error message for require is too long
Pos: 9:278

Error message for require 1is too long
Pos: 9:279

Error message for require is too long
Pos: 9:284

Error message for require is too long
Pos: 9:322

Error message for require is too long
Pos: 9:327

Error message for require is too long
Pos: 9:348

Error message for require is too long
Pos: 9:349

Code contains empty blocks

Pos: 94:369

Error message for revert is too long
Pos: 15:406

Error message for revert is too long
Pos: 15:410

Error message for require is too long
Pos: 9:502

Variable name must be in mixedCase
Pos: 46:512

Variable name must be in mixedCase
Pos: 58:512

Variable name must be in mixedCase
Pos: 40:513

Variable name must be in mixedCase

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pos: 74:513

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity °

Pos: 5:521

riable name must be in mixedCase
7:529

riable name must be in mixedCase
9:533

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

