
Project: stETH Token
Website: https://lido.fi/
Platform: Ethereum
Language: Solidity
Date: May 10th, 2024

https://lido.fi/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contract audit initiatives, the smart contract of
stETH Token from lido.fi was audited. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 10th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● This contract seems to be a part of the Aragon framework, specifically handling

proxy contracts for upgradeable apps. Here's a breakdown of its functionality:

○ Unstructured Storage Library: This library provides functions to interact

with unstructured storage. It allows storing and retrieving data at arbitrary

storage slots.

○ Interface Definitions:
■ IACL: An interface defining the Access Control List for permissions

management.

■ IVaultRecoverable: An interface for contracts that support the

recovery of tokens to a vault.

○ AppStorage Contract: This contract defines storage slots for storing the

kernel address and app ID.

○ IsContract Contract: This contract provides a function isContract to check if

an address corresponds to a contract.

○ ERCProxy Contract: This contract defines an interface for proxy contracts,

specifying functions to get the proxy type and implementation address.

○ DelegateProxy Contract: This contract extends ERCProxy and provides a

function delegatedFwd to perform delegate calls.

○ DepositableStorage Contract: This contract defines a storage slot to

indicate whether a contract accepts deposits.

○ DepositableDelegateProxy Contract: This contract combines the

functionality of DepositableStorage and DelegateProxy, allowing for delegate

calls and handling of deposits.

○ KernelConstants Contract: This contract defines constants related to the

Aragon kernel, such as the app IDs for the core kernel, default ACL, and

default vault.

○ KernelNamespaceConstants Contract: This contract defines constants

related to kernel namespaces.

○ AppProxyBase Contract: This contract is the base contract for Aragon app

proxies. It sets up the proxy with a kernel reference, app ID, and optional

initialization payload.

○ AppProxyUpgradeable Contract: This contract extends AppProxyBase and
implements the ERC897 standard for upgradeable proxies. It defines

functions to get the implementation address and proxy type.

● Overall, these contracts provide a framework for creating upgradeable proxies for

Aragon apps, allowing for efficient storage management and upgradeability.

● stETH is a transferable rebasing utility token representing a share of the total ETH

staked through the LIDO protocol, which consists of user deposits and staking

rewards. Because stETH rebases daily, it communicates the position of the share

daily.

Audit scope

Name Code Review and Security Analysis Report for
stETH Token Smart Contract

Platform Ethereum

File AppProxyUpgradeable.sol

Smart Contract Code 0xae7ab96520de3a18e5e111b5eaab095312d7fe84

Audit Date May 10th, 2024

https://etherscan.io/token/0xae7ab96520de3a18e5e111b5eaab095312d7fe84#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Liquid staked Ether 2.0 st

● Symbol: stETH

● Decimals: 18

YES, This is valid.

Ownership Control:
● There are no owner functions, which

makes it 100% decentralized.

YES, This is valid.

Audit Summary

According to the standard audit assessment, Customer`s solidity based smart contract is
“Secured”.This token contract does not have any ownership control, hence it is 100%
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 4 very low-level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is iter5re a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it Proxy? Yes

Can Take Ownership? Not Detected

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in stETH Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the stETH Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contract. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a stETH Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0xae7ab96520de3a18e5e111b5eaab095312d7fe84#code

AS-IS overview

AppProxyUpgradeable.sol : Functions

Sl. Functions Type Observation Conclusion
1 constructor write Incorrect placement of

the visibility modifier,
Empty Blocks in Code

Refer Audit
Findings

2 implementation read Passed No Issue
3 proxyType write Passed No Issue
4 getAppBase internal Passed No Issue
5 isDepositable read Passed No Issue
6 setDepositable internal Passed No Issue
7 delegatedFwd internal Passed No Issue
8 proxyType write Passed No Issue
9 implementation read Passed No Issue
10 isContract internal Passed No Issue
11 kernel read Passed No Issue
12 appId read Passed No Issue
13 setKernel internal Passed No Issue
14 setAppId internal Passed No Issue
15 acl read Passed No Issue
16 hasPermission read Passed No Issue
17 setApp write Passed No Issue
18 getApp read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:
(1) Functions in interfaces should be declared external:

interface IACL {

function initialize(address permissionsCreator) external;

// TODO: this should be external

// See https://github.com/ethereum/solidity/issues/4832

function hasPermission(address who, address where, bytes32 what,

bytes how) public view returns (bool);

}

When working with interfaces in code, it's essential to declare functions as external within

the interface definition. This warning occurs because one or more functions in your

interface are not declared as external.

Resolution: Ensure that each function declaration within the interface is preceded by the

"external" keyword.

(2) Use the latest solidity version:

pragma solidity ^0.4.24;

Use the latest solidity version while contract deployment to prevent any compiler

version-level bugs.

Resolution: Please use versions greater than 0.8.7.

(3) Incorrect placement of the visibility modifier:

constructor(IKernel _kernel, bytes32 _appId, bytes

_initializePayload)

AppProxyBase(_kernel, _appId, _initializePayload)

public // solium-disable-line visibility-first

{

// solium-disable-previous-line no-empty-blocks

}

During the code review, it was observed that the constructor in the smart contract contains

a visibility modifier (public) that is placed after other modifiers and the constructor's base

constructor call. According to Solidity's syntax conventions, visibility modifiers should be

the first modifiers in the list.

Resolution: We recommend adhering to Solidity's syntax guidelines by moving the

visibility modifier to the beginning of the list of modifiers.

(4) Empty Blocks in Code:

constructor(IKernel _kernel, bytes32 _appId, bytes

_initializePayload)

AppProxyBase(_kernel, _appId, _initializePayload)

public // solium-disable-line visibility-first

{

// solium-disable-previous-line no-empty-blocks

}

During the code review, it was identified that the constructor in the smart contract contains

an empty block. Empty blocks serve no functional purpose and can lead to confusion for

developers reviewing the code. Code readability and maintainability are essential for smart

contracts, and empty blocks should be avoided.

Resolution: We recommend removing the empty block to improve code clarity and

maintainability.

Centralization Risk

The stETH Token smart contract does not have any ownership control, hence it is 100%
decentralized.

Therefore, there is no centralization risk.

Conclusion

We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 4 informational issues in the

smart contract. And those issues are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0xae7ab96520de3a18e5e111b5eaab095312d7fe84#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - stETH Token

AppProxyUpgradeable Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> AppProxyUpgradeable.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

AppProxyUpgradeable.sol

Solhint Linter

Solhint Linters are the utility tools that analyze the given source code and report

programming errors, bugs, and stylistic errors. For the Solidity language, there are some

linter tools available that a developer can use to improve the quality of their Solidity

contracts.

AppProxyUpgradeable.sol

Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:10
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:15
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:19
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:23
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:27
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:31
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:35
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:39
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:43
Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:53
Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:70
Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:88
Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:113
Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:151
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:168
Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:179
Compiler version 0.4.24 does not satisfy the ^0.5.8 semver
requirement

Pos: 1:192
Provide an error message for require
Pos: 9:206
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:209
Compiler version 0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:225
Compiler version 0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:246
Fallback function must be simple
Pos: 5:254
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:260
Compiler version ^0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:296
Compiler version 0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:324
Provide an error message for require
Pos: 13:350
Provide an error message for require
Pos: 13:353
Avoid using low level calls.
Pos: 21:353
Compiler version 0.4.24 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:364
Visibility modifier must be first in list of modifiers
Pos: 9:377
Code contains empty blocks
Pos: 5:378

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

