
Project: Axie Infinity Shard
Website: axieinfinity.com
Platform: Ethereum
Language: Solidity
Date: April 16th, 2024

http://axieinfinity.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………….12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 21

● Solhint Linter …………………………………………………………………….……….. 22

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Axie Infinity
Shard smart contract from axieinfinity.com was audited extensively. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on April 16th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● The AXSToken smart contract, is an ERC20 token. Here's a breakdown of what each

part of the code does:

○ SafeMath.sol: This library provides functions for safe mathematical

operations to prevent overflows and underflows.

○ IERC20.sol: This is the interface for the ERC20 standard. It defines the

functions and events that an ERC20 token contract must implement.

○ ERC20.sol: This contract implements the ERC20 interface. It includes

functions for transferring tokens, approving spending, and managing

allowances.

○ IERC20Detailed.sol: This interface extends the ERC20 interface with

additional functions for getting the name, symbol, and decimals of the token.

○ ERC20Detailed.sol: This contract implements the detailed ERC20 interface. It

adds the name, symbol, and decimal properties to the ERC20 contract.

○ ERC20GatewayWhitelist.sol: This contract extends the ERC20 contract and

adds functionality to whitelist a mainchain gateway. It allows unlimited

allowance for the gateway address and sets a limit for other addresses.

○ AXSToken.sol: This is the main contract for the AXS token. It inherits from

ERC20Detailed and ERC20GatewayWhitelist contracts. In the constructor, it

sets the total supply, assigns all tokens to the contract deployer, and sets the

mainchain gateway.

● Overall, this code defines an ERC20 token contract for Axie Infinity Shard (AXS) with

additional functionality for whitelisting a mainchain gateway.

Audit scope

Name Code Review and Security Analysis Report for Axie
Infinity Shard Smart Contract

Platform Ethereum

Language Solidity

File AXSToken.sol

Smart Contract Code 0xbb0e17ef65f82ab018d8edd776e8dd940327b28b

Audit Date April 16th, 2024

https://etherscan.io/token/0xbb0e17ef65f82ab018d8edd776e8dd940327b28b#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name:Axie Infinity Shard

● Symbol: AXS

● Decimals: 18

● Total Supply: 270 Million

YES, This is valid.

Ownership Control:
● There are no owner functions, which

makes it 100% decentralized.

YES, This is valid.

Other Specification:.
● The token is without any other custom

functionality and without any ownership

control, which makes it truly decentralized.

YES, This is valid.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. This token contract does not have any ownership control, hence
it is 100% decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 4 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Axie Infinity Shard are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Axie Infinity Shard.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an Axie Infinity Shard smart contract code in the form of an Etherscan web

link.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0xbb0e17ef65f82ab018d8edd776e8dd940327b28b#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 allowance read Passed No Issue
3 transferFrom write Passed No Issue
4 _setGateway internal Passed No Issue
5 approve write Optimization Refer Audit

Findings
6 allowance read Passed No Issue
7 increaseAllowance write Optimization Refer Audit

Findings
8 decreaseAllowance write Optimization Refer Audit

Findings
9 transfer write Passed No Issue
10 transferFrom write Passed No Issue
11 _approve internal Passed No Issue
12 _transfer internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low Severity vulnerabilities were found.

Very Low / Informational / Best practices:
(1) Multiple times pragma solidity version defines:

There are multiple times the same pragma versions defined.

Resolution: We suggest using only one pragma solidity version on top of the code.

(2) Missing SPDX-License-Identifier:

SPDX-License-Identifier is written with the wrong syntax.

Resolution: We suggest adding the correct SPDX license identifier.

(3) Unused interface and functions:

IERC20Detailed interface defined. ERC20Detailed was inherited from IERC20Detailed but

never used.

Resolution: We suggest removing the unused interface and functions in the code.

(4) Optimization:

The public functions that are never called by the contract should be declared external, and

their immutable parameters should be located in call data to save gas.

● approve()

● increaseAllowance()

● decreaseAllowance()

Resolution: Use the external attribute for functions never called from the contract, and

change the location of immutable parameters to call data to save gas.

Centralization Risk

The Axie Infinity Shard smart contract does not have any ownership control, hence it is
100% decentralized.

Therefore, there is no centralization risk.

Conclusion
We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 4 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0xbb0e17ef65f82ab018d8edd776e8dd940327b28b#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Axie Infinity Shard

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> AXSToken.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

AXSToken.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

AXSToken.sol

Error message for require is too long
Pos: 5:26
Error message for require is too long
Pos: 5:107
Error message for require is too long
Pos: 5:108
Error message for require is too long
Pos: 5:115
Error message for require is too long
Pos: 5:116
Error message for require is too long
Pos: 5:117
Error message for require is too long
Pos: 5:190

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

