
Project: CRO Token
Website: cronos-pos.org
Platform: Ethereum
Language: Solidity
Date: May 7th, 2024

1

http://cronos-pos.org

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………….13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 27

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the CRO Token
smart contract from cronos-pos.org was audited extensively. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on May 7th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

● This contract inherits from several other contracts and libraries to implement

functionalities like access control, ERC20 token standards, pausing, burning, and

minting.

● Here's a breakdown of what this contract does:

○ Libraries: The contract imports and uses various libraries like

EnumerableSet, SafeMath, and Address to implement set operations, safe

arithmetic operations, and address-related functions.

○ AccessControl: The contract defines roles (MINTER_ROLE and

PAUSER_ROLE) and assigns them to specific accounts. These roles control

who can mint new tokens and pause/unpause the contract.

○ ERC20 Token: The contract implements the ERC20 token standard with

functionalities like transferring tokens, approving spending, allowance

management, total supply, balance inquiries, etc.

○ Burnable: This contract allows tokens to be burned (destroyed) by the token

owner or by another authorized account.

○ Pausable: The contract can be paused and unpaused, preventing token

transfers while paused to avoid potential issues or attacks.

○ Constructor: The constructor initializes the contract by setting up the default

admin role and assigning the minter and pauser roles to the contract

deployer.

● Overall, this contract provides a standard ERC20 token with additional features

such as access control, burning, and pausing.

Audit scope

Name Code Review and Security Analysis Report for CRO
Token Smart Contract

Platform Ethereum

Language Solidity

File CroToken.sol

Smart Contract Code 0xa0b73e1ff0b80914ab6fe0444e65848c4c34450b

Audit Date May 7th, 2024

https://etherscan.io/token/0xa0b73e1ff0b80914ab6fe0444e65848c4c34450b#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: CRO

● Symbol: CRO

● Decimals: 8

● Total Supply: 100 billion

YES, This is valid.

Other Specifications:
● The ReleaseAgent can release tokens before

transferable.

● An upgrade agent address be updated by the upgrade

Master.

● An upgrade master address be updated by the current

upgradeMaster.

● ReleaseAgent can release the tokens to the wild.

YES, This is valid.

Owner Specifications:
● The owner can be minting new tokens

● The owner can stop minting new tokens.

● ReleaseAgent address can be updated by the owner

● The owner can allow a particular address (a crowd sale

contract) to transfer tokens despite the lock-up period

● An upgrade master address be updated by the current

upgradeMaster.

● Renouncing ownership will leave the contract without

an owner.

● Allows the current owner to transfer control of the

contract to a new owner

YES, This is valid.
We suggest
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 1 low, and 7 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? No

Can Take Ownership? Yes

Creator Percentage? 0.00%

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in CRO Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the CRO Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a CRO Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0xa0b73e1ff0b80914ab6fe0444e65848c4c34450b#code

AS-IS overview

CroToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 releaseTokenTransfer write access only Release

Agent
No Issue

3 canUpgrade read Passed No Issue
4 totalSupply read Passed No Issue
5 isUpgradeAgent write Passed No Issue
6 upgradeFrom write Passed No Issue
7 upgrade write Passed No Issue
8 setUpgradeAgent external Passed No Issue
9 getUpgradeState read Passed No Issue
10 setUpgradeMaster write Critical operation

lacks event log
Refer Audit
Findings

11 canUpgrade read Passed No Issue
12 canTransfer modifier Passed No Issue
13 setReleaseAgent write Critical operation

lacks event log,
Missing zero address

validation

Refer Audit
Findings

14 setTransferAgent write access only Owner No Issue
15 releaseTokenTransfer write access only Release

Agent
No Issue

16 inReleaseState modifier Passed No Issue
17 onlyReleaseAgent modifier Passed No Issue
18 transfer write can Transfer No Issue
19 transferFrom write can Transfer No Issue
20 canMint modifier Passed No Issue
21 hasMintPermission modifier Passed No Issue
22 mint write Centralization Risk Refer Audit

Findings
23 finishMinting write access only Owner No Issue
24 transferFrom write Passed No Issue
25 approve write Passed No Issue
26 allowance read Passed No Issue
27 increaseApproval write Passed No Issue
28 decreaseApproval write Passed No Issue
29 allowance read Passed No Issue
30 transferFrom write Passed No Issue
31 approve write Passed No Issue
32 totalSupply read Passed No Issue
33 transfer write Passed No Issue
34 balanceOf read Passed No Issue

35 totalSupply read Passed No Issue
36 balanceOf read Passed No Issue
37 transfer write Passed No Issue
38 onlyOwner modifier Passed No Issue
39 renounceOwnership write access only Owner No Issue
40 transferOwnership write access only Owner No Issue
41 _transferOwnership internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

function setReleaseAgent(address addr) public onlyOwner

inReleaseState(false) {

// We don't do interface check here as we might want to a

normal wallet address to act as a release agent

releaseAgent = addr;

}

function setUpgradeMaster(address master) public {

require(master != address(0), "The provided upgradeMaster is

required to be a non-empty address when setting upgrade master.");

require(msg.sender == upgradeMaster, "Message sender is

required to be the original upgradeMaster when setting (new) upgrade

master.");

upgradeMaster = master;

}

Missing event log contract functions like:

● ReleasableToken: setReleaseAgent()

● UpgradeableToken: setUpgradeMaster()

Recommendation: We suggest considering adding events for sensitive actions, and emit

them in the functions.

Very Low / Informational / Best practices:

(1) Missing SPDX-License-Identifier:

SPDX-License-Identifier is not written.

Recommendation: We suggest adding the SPDX License Identifier.

(2) Missing zero address validation:

function setReleaseAgent(address addr) public onlyOwner

inReleaseState(false) {

// We don't do interface check here as we might want to a

normal wallet address to act as a release agent

releaseAgent = addr;

}

Detects missing zero address validation in setReleaseAgent() in the RelesableToken

contract. Addresses should be checked before assignment or external call to make sure

they are not zero addresses.

Recommendation: We suggest adding a zero-check for the passed-in address value to

prevent unexpected errors.

(3) Missing error message in required condition:

It is best practice to add custom error messages in every required condition, which would

be helpful in debugging as well as giving a clear indication of any transaction failure.

Some of the contracts that do not add error messages in the required conditions are:

● Ownable Contracts

● BasicToken Contracts

● StandardToken Contracts

● MintableToken Contracts

Recommendation: Add custom error messages in every required condition.

(4) Visibility can be external over the public:

Any functions which are not called internally should be declared as external. This saves

some gas and is considered a good practice.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

(5) Unused event:

event UpdatedTokenInformation(string newName, string newSymbol);

UpdatedTokenInformation event is defined, but not used in code.

Recommendation: We suggest removing unused events.

(6) Make variables constant:

UpgradeAgent Contract:

uint public originalSupply;

UpgradeableToken Contract:

bool canUpgrade_ = true;

These variables will be unchanged. So, please make it constant. It will save some gas.

Recommendation: Declare those variables as constant. Just put a constant keyword.

(7) Centralization Risk:

function mint(

address _to,

uint256 _amount

)

public

hasMintPermission

canMint

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

returns (bool)

{

totalSupply_ = totalSupply_.add(_amount);

balances[_to] = balances[_to].add(_amount);

emit Mint(_to, _amount);

emit Transfer(address(0), _to, _amount);

return true;

}

The hasMintPermission can mint unlimited tokens.

Recommendation: We suggest carefully managing these account's private keys to avoid

any potential risks of being hacked. In general, we strongly recommend centralized

privileges or roles in the protocol be improved via a decentralized mechanism or

smart-contract-based accounts with enhanced security practices.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

CroToken.sol
● releaseTokenTransfer: The ReleaseAgent can release tokens before transferable.

UpgradeableToken.sol
● setUpgradeAgent: An upgrade agent address is updated by the upgrade Master.

● setUpgradeMaster: An upgrade master address be updated by the current

upgradeMaster.

ReleasableToken.sol
● setReleaseAgent: ReleaseAgent address can be updated by the owner.

● setTransferAgent: The owner can allow a particular address (a crowd sale contract)

to transfer tokens despite the lock-up period.

● releaseTokenTransfer: ReleaseAgent can release the tokens to the wild.

MintableToken.sol
● mint: The owner can mint new tokens.

● finishMinting: The owner can stop minting new tokens.

Ownable.sol
● renounceOwnership: Renouncing ownership will leave the contract without an

owner.

● transferOwnership: Allows the current owner to transfer control of the contract to a

new owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 1 low and 7 Informational

issues in the smart contracts. but those are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0xa0b73e1ff0b80914ab6fe0444e65848c4c34450b#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - CRO Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

CroToken.sol

INFO:Detectors:
ReleasableToken.setReleaseAgent(address) (CroToken.sol#359-363) should emit an
event for:

- releaseAgent = addr (CroToken.sol#362)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-acc
ess-control
INFO:Detectors:
UpgradeableToken.constructor(address)._upgradeMaster (CroToken.sol#442) lacks a
zero-check on :

- upgradeMaster = _upgradeMaster (CroToken.sol#443)
ReleasableToken.setReleaseAgent(address).addr (CroToken.sol#359) lacks a
zero-check on :

- releaseAgent = addr (CroToken.sol#362)
CroToken.constructor(string,string,uint256,uint8,bool,address,address,address,ad
dress,address)._secondarySaleReserveWallet (CroToken.sol#558) lacks a zero-check
on :

- secondarySaleReserveWallet = _secondarySaleReserveWallet
(CroToken.sol#576)
CroToken.constructor(string,string,uint256,uint8,bool,address,address,address,ad
dress,address)._mainNetLaunchIncentiveReserveWallet (CroToken.sol#559) lacks a
zero-check on :

- mainNetLaunchIncentiveReserveWallet =
_mainNetLaunchIncentiveReserveWallet (CroToken.sol#577)
CroToken.constructor(string,string,uint256,uint8,bool,address,address,address,ad
dress,address)._capitalReserveWallet (CroToken.sol#560) lacks a zero-check on :

- capitalReserveWallet = _capitalReserveWallet
(CroToken.sol#578)
CroToken.constructor(string,string,uint256,uint8,bool,address,address,address,ad
dress,address)._ecosystemGrantsReserveWallet (CroToken.sol#561) lacks a
zero-check on :

- ecosystemGrantsReserveWallet = _ecosystemGrantsReserveWallet
(CroToken.sol#579)
CroToken.constructor(string,string,uint256,uint8,bool,address,address,address,ad
dress,address)._airdropReserveWallet (CroToken.sol#562) lacks a zero-check on :

- airdropReserveWallet = _airdropReserveWallet
(CroToken.sol#580)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-addre
ss-validation

INFO:Detectors:
Reentrancy in UpgradeableToken.setUpgradeAgent(address) (CroToken.sol#472-495):

External calls:
- require(bool,string)(upgradeAgent.isUpgradeAgent(),The provided

updateAgent contract is required to be compliant to the UpgradeAgent interface
method when setting upgrade agent.) (CroToken.sol#489)

- require(bool,string)(upgradeAgent.originalSupply() == totalSupply_,The
provided upgradeAgent contract's originalSupply is required to be equivalent to
existing contract's totalSupply_ when setting upgrade agent.) (CroToken.sol#492)

Event emitted after the call(s):
- UpgradeAgentSet(upgradeAgent) (CroToken.sol#494)

Reentrancy in UpgradeableToken.upgrade(uint256) (CroToken.sol#449-467):
External calls:
- upgradeAgent.upgradeFrom(msg.sender,value) (CroToken.sol#465)
Event emitted after the call(s):
- Upgrade(msg.sender,upgradeAgent,value) (CroToken.sol#466)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnera
bilities-3
INFO:Detectors:
Pragma version^0.4.13 (CroToken.sol#5) allows old versions
solc-0.4.24 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions
-of-solidity
INFO:Detectors:
Parameter SafeMath.mul(uint256,uint256)._a (CroToken.sol#12) is not in mixedCase
Parameter SafeMath.mul(uint256,uint256)._b (CroToken.sol#12) is not in mixedCase
Parameter SafeMath.div(uint256,uint256)._a (CroToken.sol#28) is not in mixedCase
Parameter SafeMath.div(uint256,uint256)._b (CroToken.sol#28) is not in mixedCase
Parameter SafeMath.sub(uint256,uint256)._a (CroToken.sol#38) is not in mixedCase
Parameter SafeMath.sub(uint256,uint256)._b (CroToken.sol#38) is not in mixedCase
Parameter SafeMath.add(uint256,uint256)._a (CroToken.sol#46) is not in mixedCase
Parameter SafeMath.add(uint256,uint256)._b (CroToken.sol#46) is not in mixedCase
Parameter Ownable.transferOwnership(address)._newOwner (CroToken.sol#95) is not
in mixedCase
Parameter BasicToken.transfer(address,uint256)._to (CroToken.sol#136) is not in
mixedCase
Parameter BasicToken.transfer(address,uint256)._value (CroToken.sol#136) is not
in mixedCase
Parameter BasicToken.balanceOf(address)._owner (CroToken.sol#151) is not in
mixedCase
Parameter StandardToken.transferFrom(address,address,uint256)._from
(CroToken.sol#184) is not in mixedCase
Parameter StandardToken.transferFrom(address,address,uint256)._to
(CroToken.sol#185) is not in mixedCase
Parameter StandardToken.transferFrom(address,address,uint256)._value
(CroToken.sol#186) is not in mixedCase
Parameter StandardToken.approve(address,uint256)._spender (CroToken.sol#211) is
not in mixedCase
Parameter StandardToken.approve(address,uint256)._value (CroToken.sol#211) is
not in mixedCase
Parameter StandardToken.allowance(address,address)._owner (CroToken.sol#224) is
not in mixedCase
Parameter StandardToken.allowance(address,address)._spender (CroToken.sol#225)
is not in mixedCas
Parameter StandardToken.increaseApproval(address,uint256)._spender
(CroToken.sol#244) is not in mixedCase
Parameter StandardToken.increaseApproval(address,uint256)._addedValue
(CroToken.sol#245) is not in mixedCase
Parameter StandardToken.decreaseApproval(address,uint256)._spender
(CroToken.sol#266) is not in mixedCase
Parameter StandardToken.decreaseApproval(address,uint256)._subtractedValue
(CroToken.sol#267) is not in mixedCase
Parameter MintableToken.mint(address,uint256)._to (CroToken.sol#308) is not in

mixedCase
Parameter MintableToken.mint(address,uint256)._amount (CroToken.sol#309) is not
in mixedCase
Parameter ReleasableToken.transfer(address,uint256)._to (CroToken.sol#393) is
not in mixedCase
Parameter ReleasableToken.transfer(address,uint256)._value (CroToken.sol#393) is
not in mixedCase
Parameter ReleasableToken.transferFrom(address,address,uint256)._from
(CroToken.sol#398) is not in mixedCase
Parameter ReleasableToken.transferFrom(address,address,uint256)._to
(CroToken.sol#398) is not in mixedCase
Parameter ReleasableToken.transferFrom(address,address,uint256)._value
(CroToken.sol#398) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-sol
idity-naming-conventions
INFO:Detectors:
CroToken (CroToken.sol#530-628) does not implement functions:

- ERC20Basic.transfer(address,uint256) (CroToken.sol#113)
- ERC20.transferFrom(address,address,uint256) (CroToken.sol#161-162)

UpgradeAgent (CroToken.sol#630-642) does not implement functions:
- UpgradeAgent.upgradeFrom(address,uint256) (CroToken.sol#639)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unimplemented-func
tions
INFO:Detectors:
UpgradeAgent.originalSupply (CroToken.sol#632) should be constant
UpgradeableToken.canUpgrade_ (CroToken.sol#519) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-th
at-could-be-declared-constant
INFO:Slither:CroToken.sol analyzed (11 contracts with 93 detectors), 46
result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

CroToken.sol

Check-effects-interaction: Potential violation of
Checks-Effects-Interaction pattern in
UpgradeableToken.setUpgradeAgent(address): This could potentially
lead to re-entrance vulnerability. Note: Modifiers are currently not
considered in this static analysis.
Pos: 472:4:

Gas costs: The gas requirement of the function CroToken.mint is
infinite: If the gas requirement of a function is higher than the
block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)
Pos: 307:2:

Gas costs: Gas requirement of function CroToken.transfer is infinite:
If the gas requirement of a function is higher than the block gas
limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or
copying arrays in storage)
Pos: 393:4:

Gas costs: Gas requirement of function CroToken.transferFrom is
infinite: If the gas requirement of a function is higher than the
block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)
Pos: 398:4:

Constant/View/Pure functions: ReleasableToken.transferFrom(address,
address,uint256): Potentially should be constant/view/pure but is
not. Note: Modifiers are currently not considered in this static
analysis.
Pos: 398:4:

Guard conditions: Use "assert(x)" if you never ever want x to be
false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e.g. invalid input or a
failing external component.
Pos: 583:12:

Guard conditions: Use "assert(x)" if you never ever want x to be
false, not in any circumstance (apart from a bug in your code). Use

"require(x)" if x can be false, due to e.g. invalid input or a
failing external component.
Pos: 603:12:

Data truncated:Division of integer values yields an integer value
again. That means e.g. 10 / 100 = 0 instead of 0.1 since the result
is an integer again. This does not hold for the division of (only)
literal values since those yield rational constants.
Pos: 32:11:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

CroToken.sol

Compiler version ^0.4.13 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:4
Provide an error message for require
Pos: 5:75
Provide an error message for require
Pos: 5:103
Provide an error message for require
Pos: 5:136
Provide an error message for require
Pos: 5:137
Provide an error message for require
Pos: 5:190
Provide an error message for require
Pos: 5:191
Provide an error message for require
Pos: 5:192
Provide an error message for require
Pos: 5:291
Provide an error message for the require
Pos: 5:296
Error message for require is too long
Pos: 9:349
Error message for require is too long
Pos: 9:382
Error message for require is too long
Pos: 9:388
Error message for require is too long
Pos: 9:452
Error message for require is too long
Pos: 9:455
Error message for require is too long
Pos: 9:473
Error message for require is too long
Pos: 9:475
Error message for require is too long
Pos: 9:478
Error message for require is too long
Pos: 9:481
Error message for require is too long
Pos: 9:483
Error message for require is too long
Pos: 9:488
Error message for require is too long

Pos: 9:491
Error message for require is too long
Pos: 9:511
Error message for require is too long
Pos: 9:513
Explicitly mark visibility of state
Pos: 5:518
Error message for require is too long
Pos: 13:582
Error message for require is too long
Pos: 13:602

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

