
Project: FLOKI Token
Website: floki.com
Platform: Ethereum
Language: Solidity
Date: May 19th, 2024

http://floki.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………….12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 25

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Floki Token
smart contract from floki.com was audited extensively. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on May 19th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● This Solidity contract is for the FLOKI token, which has various functionalities

including governance, tax handling, and treasury operations. Let's break down

some of the key components:

○ State Variables: The contract contains several mappings to track balances,

allowances, delegates for governance, nonces for vote delegation, and

balance checkpoints for voting.

○ Events: Two events are defined (`TaxHandlerChanged` and

`TreasuryHandlerChanged`) to emit when the tax handler or treasury handler

contracts are changed.

○ Constructor: Initializes the token with a name, symbol, initial tax handler

address, and initial treasury handler address. It also assigns the total supply

of tokens to the contract creator.

○ ERC20 Implementation: Implements the ERC20 standard functions such as
`name`, `symbol`, `decimals`, `totalSupply`, `balanceOf`, `transfer`,

`transferFrom`, `approve`, `allowance`, `increaseAllowance`, and

`decreaseAllowance`.

○ Delegation: Allows token holders to delegate their voting power to other

addresses.

○ Vote Checkpoints: Utilizes a checkpoint mechanism to track the voting

power of token holders at different block numbers.

○ Tax and Treasury Handling: The `_transfer` function handles token

transfers by applying taxes and sending the taxed amount to the treasury. It

calls functions from the tax handler and treasury handler contracts to

determine the tax amount and perform treasury operations.

○ Owner Functions: Includes functions (`setTaxHandler` and

`setTreasuryHandler`) for the owner to set new tax handler and treasury

handler contracts.

● Overall, this contract provides a comprehensive framework for managing the FLOKI

token, incorporating governance, taxation, and treasury functionalities.

Audit scope

Name Code Review and Security Analysis Report for
FLOKI Token Smart Contract

Platform Ethereum

Language Solidity

File FLOKI.sol

Ethereum Code 0xcf0c122c6b73ff809c693db761e7baebe62b6a2e

Audit Date May 19th, 2024

https://etherscan.io/token/0xcf0c122c6b73ff809c693db761e7baebe62b6a2e#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: FLOKI

● Symbol: FLOKI

● Decimals: 9

● Total Supply:10 Trillion

YES, This is valid.

Ownership Control:
● Set new treasury handler contract.

● Set a new tax handler contract.

● The current owner can transfer the

ownership.

● The owner can renounce ownership.

YES, This is valid.
We suggest renouncing
ownership once the ownership
functions are not needed. This is
to make the smart contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 4 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in FLOKI Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the FLOKI Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a FLOKI Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. and the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry-standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0xcf0c122c6b73ff809c693db761e7baebe62b6a2e#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals external Passed No Issue
5 totalSupply write Passed No Issue
6 balanceOf external Passed No Issue
7 transfer external Passed No Issue
8 allowance external Passed No Issue
9 approve external Passed No Issue
10 transferFrom external Passed No Issue
11 increaseAllowance external Passed No Issue
12 decreaseAllowance external Passed No Issue
13 delegate external Passed No Issue
14 delegateBySig external Passed No Issue
15 getVotesAtBlock read Passed No Issue
16 setTaxHandler external Missing Zero Address

Validation,
Centralization

Refer Audit
Findings

17 setTreasuryHandler external Missing Zero Address
Validation,

Centralization

Refer Audit
Findings

18 _delegate write Passed No Issue
19 _moveDelegates write Passed No Issue
20 _writeCheckpoint write Passed No Issue
21 _approve write Passed No Issue
22 _transfer write Passed No Issue
23 owner read Passed No Issue
24 onlyOwner modifier Passed No Issue
25 renounceOwnership write access only Owner No Issue
26 transferOwnership write access only Owner No Issue
27 _setOwner write Passed No Issue
28 _msgSender internal Passed No Issue
29 _msgData internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

No Low Severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Declare variables constant:

These variables' values will remain unchanged. so, we suggest making them constant. It is

best practice and it also saves some gas. Just add a constant keyword.

Resolution: Please suggest making variables constant.

(2) Unlocked Compiler Version:

These contracts have unlocked compiler versions:-

● Context.sol

● IERC20.sol

● Ownable.sol

The contract has an unlocked compiler version. An unlocked compiler version in the

source code of the contract permits the user to compile it at or above a particular version.

This, in turn, leads to differences in the generated bytecode between compilations due to

differing compiler version numbers. This can lead to an ambiguity when debugging as

compiler-specific bugs may occur in the codebase that would be hard to identify over a

span of multiple compiler versions rather than a specific one.

Resolution: We suggest that the compiler version is instead locked at the lowest version

possible that the contract can be compiled at.

(3) Missing Zero Address Validation:

Addresses are not validated before assignment or external calls, potentially allowing the

use of zero addresses and leading to unexpected behavior or vulnerabilities.

Resolution: It is recommended to add a zero-check for the passed-in address value to

prevent unexpected errors.

(4) Centralization:

The onlyOwner has owner authority of the following functions:

● setTaxHandler(),

● setTreasuryHandler()

Resolution: We suggest carefully managing the privileged account's private key to avoid

any potential risks of being hacked. In general, we strongly recommend centralized

privileges or roles in the protocol be improved via a decentralized mechanism or

smart-contract-based accounts with enhanced security practices, e.g., multi signature

wallets.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

FLOKI.sol
● setTaxHandler: Update the new tax handler contract address by the owner.

● setTreasuryHandler: Update the new treasury handler contract address by the

owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 4 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0xcf0c122c6b73ff809c693db761e7baebe62b6a2e#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - FLOKI Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> FLOKI.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

FLOKI.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

FLOKI.sol

Compiler version 0.8.11 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:189
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:213
Error message for require is too long
Pos: 9:248
Compiler version 0.8.11 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:262
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:320
Error message for require is too long
Pos: 9:507
Error message for require is too long
Pos: 9:508
Avoid making time-based decisions in your business logic
Pos: 17:508
Error message for require is too long
Pos: 9:509
Error message for require is too long
Pos: 9:522
Error message for require is too long
Pos: 9:675
Error message for require is too long
Pos: 9:695
Error message for require is too long
Pos: 9:696
Error message for require is too long
Pos: 9:697

Software analysis result:
This software reported many false positive results and some were informational issues.

So, those issues can be safely ignored.

