
Project: OWC Bridge
Website: oneworldchain.org
Platform: Base Chain, Ethereum,

and Binance Network
Language: Solidity
Date: June 28th, 2024

https://oneworldchain.org

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the OWC chain Provider Limited to perform the Security
audit of the OWC Bridge smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on June 28th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The provided Solidity contract implements a bridge for token transfers, featuring essential

ERC20 functions. The contract includes:

● Token Operations: Functions to mint, burn, and transfer tokens.
● Ownership Control: Functions to transfer and accept ownership, and manage

signers.

● Fee and Reserve Management: Setting fee and reserve wallets, and managing

reserve fund thresholds.

● Tax Handling: Processing tax on transactions and setting tax rates.
● Transaction Controls: Setting minimum and maximum transaction values,

managing no-control token addresses, and handling token thresholds for different

tokens.

It uses interfaces for ERC20 tokens and a custom USDT token.

Audit scope

Name Code Review and Security Analysis Report for
OWC Bridge Smart Contract

Platform Base Chain Network, Ethereum, Binance Smart
Chain / Solidity

File Bridge.sol

Basescan Smart
Contract Address 0x3D9CE0d8dF32a0D706F29DC82E75c07a8f7B320b

Etherscan Smart
Contract Address 0x768f7F738e15f8fdeeEAC4206ef1686fc21cB915

Bscscan Smart Contract
Address 0x239aBE992aAFE1347dcC560A801ca352f70005A4

Audit Date June 28th, 2024

https://basescan.org/address/0x3D9CE0d8dF32a0D706F29DC82E75c07a8f7B320b#code
https://etherscan.io/address/0x768f7F738e15f8fdeeEAC4206ef1686fc21cB915#code
https://bscscan.com/address/0x239aBE992aAFE1347dcC560A801ca352f70005A4#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

The owner has control over the following
functions:

● The owner can update the fee wallet address.

● The owner can update the reserve wallet

address.

● The owner can update the USDT token

address.

● The owner can update the threshold amount.

● The owner can update the noControl address.

● The owner can modify the token reserve

threshold values.

● The owner can modify the transfer tax.

● The owner can change the minimum and

maximum amount of tokens that can be

bridged in a single transaction only.

● The owner can update the signer address.

● The current owner can transfer ownership of

the contract to a new account.

YES, This is valid.
We suggest renouncing
ownership once the ownership
functions are not needed. This
is to make the smart contract
100% decentralized.

Audit Summary
According to the standard audit assessment, Customer`s solidity-based smart contracts
are “secured”. This token contract contains owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 1 low, and 3 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 9.99%

Modify Tax Yes

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? Yes

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? No

Can Take Ownership? Yes

Creator Percentage? 0.00%

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the OWC Bridge are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the OWC Bridge.

The OWC Bridge team has not provided scenario and unit test scripts, which would help to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given an OWC Bridge smart contract code in the form of a basescan, etherscan,

and bscscan weblink. The hash of that code is mentioned above in the table.

As mentioned above, the code parts are well commented on. And the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Another source of information was its website oneworldchain.org which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/address/0x3D9CE0d8dF32a0D706F29DC82E75c07a8f7B320b#code
https://etherscan.io/address/0x768f7F738e15f8fdeeEAC4206ef1686fc21cB915#code
https://bscscan.com/address/0x239aBE992aAFE1347dcC560A801ca352f70005A4#code
https://oneworldchain.org

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 receive external Passed No Issue
3 coinIn external Passed No Issue
4 coinOut external access only

Signer
No Issue

5 tokenIn external Passed No Issue
6 tokenOut external access only

Signer
No Issue

7 processTax read Passed No Issue
8 mintTokens internal Passed No Issue
9 burnTokens internal Passed No Issue
10 setFeeWallet external Function input

parameters
lack check

Refer Audit
Findings

11 setReserveWallet external Function input
parameters
lack check

Refer Audit
Findings

12 setUSDTAddress external access only
owner

No Issue

13 setFundThreshold external The
reserveFundT
hreshold limit
is not set

Refer Audit
Findings

14 transferTokenOwnership external access only
owner

No Issue

15 setNoControl external access only
owner

No Issue

16 setTokenReserveThreshold external Function input
parameters
lack check,

The
TokenFundThr
eshold limit is

not set

Refer Audit
Findings

17 setTransferTax external access only
owner

No Issue

18 updateMinMaxTx external Max tax limit is
not set

Refer Audit
Findings

19 getMinMaxTxValues external Passed No Issue
20 getTransferTax external Passed No Issue
21 onlyOwner modifier Passed No Issue
22 onlySigner modifier Passed No Issue

23 changeSigner write access only
owner

No Issue

24 transferOwnership write access only
owner

No Issue

25 acceptOwnership write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

(1) Function input parameters lack of check:

Variable validation is not performed in the below functions:

● setTokenReserveThreshold = forToken

● setReserveWallet = _reserveWallet

● setFeeWallet = _feeWallet

Resolution: We advise to put validation: integer type variables should be greater than 0

and address type variables should not be addressed (0).

Very Low / Informational / Best practices:

(1) Max tax limit is not set:

/**

* @notice Changes the minimum and maximum amount of tokens that

can be bridge in a single transaction

* @dev onlyOwner.

* Emits an {minMaxTxUpdated} event

* @param newMinTx, newMaxTx Base 1000, so 1% = 1

*/

function updateMinMaxTx(uint256 newMinTx, uint256 newMaxTx)

external onlyOwner {

minTx = newMinTx;

maxTx = newMaxTx;

emit minMaxTxUpdated(minTx, maxTx);

}

The owner can set any value to the individual max tax variable. This might deter investors

as they could be wary that these taxes might one day be set to 100%.

Resolution: Consider adding an explicit limit to the maximum tax value.

(2) The reserveFundThreshold limit is not set:

/* set Threshold*/

function setFundThreshold(uint256 _amount) external onlyOwner

returns(uint256 oldAmount, uint256 newAmount){

oldAmount = reserveFundThreshold;

reserveFundThreshold = _amount;

newAmount = _amount;

}

The owner can set any value to the reserveFundThreshold variable. This might deter

investors as they could be wary that this reserveFundThreshold might one day be set to

100%.

Resolution: Consider adding an explicit limit to the reserveFundThreshold value.

(3) The TokenFundThreshold limit is not set:

/* Modify the token reserve threshold values*/

function setTokenReserveThreshold(address forToken, uint256

threshold) external onlyOwner{

tokenFundThreshold[forToken] = threshold;

}

The owner can set any value to the TokenFundThreshold variable. This might deter

investors as they could be wary that these TokenFundThreshold might one day be set to

100%.

Resolution: Consider adding an explicit limit to the tokenFundThreshold value.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would usually create

trouble. The following are Admin functions:

Bridge.sol
● coinOut: The signer can coin out.

● tokenOut: The signer can token out.

● setFeeWallet: The owner can update the fee wallet address.

● setReserveWallet: The owner can update the reserve wallet address.

● setUSDTAddress: The owner can update the USDT token address.

● setFundThreshold: The owner can update the threshold amount.

● transferTokenOwnership: The current owner can transfer ownership of the contract

to a new account.

● setNoControl: The owner can update the noControl address.

● setTokenReserveThreshold: The owner can modify the token reserve threshold

values.

● setTransferTax: The owner can modify the transfer tax.

● updateMinMaxTx: The owner can change the minimum and maximum amount of

tokens that can be bridged in a single transaction only.

Ownable.sol
● changeSigner: The owner can update the signer address.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a basescan, etherscan, and bscscan

weblink., and we have used all possible tests based on given objects. We have observed 1

low and 3 Informational severity issues. but this issue is not critical. So, the smart
contract is ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/address/0x3D9CE0d8dF32a0D706F29DC82E75c07a8f7B320b#code
https://etherscan.io/address/0x768f7F738e15f8fdeeEAC4206ef1686fc21cB915#code
https://bscscan.com/address/0x239aBE992aAFE1347dcC560A801ca352f70005A4#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - OWC Bridge

Slither Results Log
Slither Log >> Bridge.sol

INFO:Detectors:
Bridge.transferTokenOwnership(address,address).newOwner (Bridge.sol#265) shadows:

- owned.newOwner (Bridge.sol#41) (state variable)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Bridge.setFundThreshold(uint256) (Bridge.sol#258-262) should emit an event for:

- reserveFundThreshold = _amount (Bridge.sol#260)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic
INFO:Detectors:
Bridge.coinOut(address,uint256,uint256).user (Bridge.sol#151) lacks a zero-check on :

- address(user).transfer(amount) (Bridge.sol#152)
Bridge.setFeeWallet(address)._feeWallet (Bridge.sol#236) lacks a zero-check on :

- feeWallet = _feeWallet (Bridge.sol#238)
Bridge.setReserveWallet(address)._reserveWallet (Bridge.sol#243) lacks a zero-check on :

- reserveWallet = _reserveWallet (Bridge.sol#245)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in Bridge.tokenIn(address,uint256,uint256,address) (Bridge.sol#158-190):

External calls:
- usdtContract(tokenAddress).transferFrom(msg.sender,address(this),tokenAmount)

(Bridge.sol#167)
Reentrancy in Bridge.tokenOut(address,address,uint256,uint256,uint256) (Bridge.sol#193-209):

External calls:
- usdtContract(tokenAddress).transfer(user,tokenAmount) (Bridge.sol#197)
- ERC20Essential(tokenAddress).transfer(user,tokenAmount) (Bridge.sol#199)
- (minted,None) = mintTokens(tokenAddress,user,tokenAmount) (Bridge.sol#203)

- ERC20Essential(tokenAddress).mint(userAddress,amountToMint) (Bridge.sol#221)
Event emitted after the call(s):
- TokenOut(_orderID,tokenAddress,user,minted,chainID) (Bridge.sol#206)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Pragma version0.8.17 (Bridge.sol#6) allows old versions
solc-0.8.17 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Event Bridge.minMaxTxUpdated(uint256,uint256) (Bridge.sol#114) is not in CapWords
Event Bridge.transferTaxUpdated(uint256) (Bridge.sol#115) is not in CapWords

Parameter Bridge.coinOut(address,uint256,uint256)._orderID (Bridge.sol#151) is not in
mixedCase
Parameter Bridge.tokenOut(address,address,uint256,uint256,uint256)._orderID (Bridge.sol#193)
is not in mixedCase
Parameter Bridge.setFeeWallet(address)._feeWallet (Bridge.sol#236) is not in mixedCase
Parameter Bridge.setReserveWallet(address)._reserveWallet (Bridge.sol#243) is not in
mixedCase
Parameter Bridge.setUSDTAddress(address)._tokenAddress (Bridge.sol#250) is not in
mixedCase
Parameter Bridge.setFundThreshold(uint256)._amount (Bridge.sol#258) is not in mixedCase
Parameter Bridge.setTransferTax(uint256)._transferTax (Bridge.sol#288) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
Reentrancy in Bridge.coinIn(address) (Bridge.sol#134-149):

External calls:
- address(feeWallet).transfer(tax) (Bridge.sol#141)
- address(reserveWallet).transfer(afterTax) (Bridge.sol#144)
Event emitted after the call(s):
- CoinIn(orderID,msg.sender,afterTax,outputCurrency) (Bridge.sol#147)

Reentrancy in Bridge.coinOut(address,uint256,uint256) (Bridge.sol#151-155):
External calls:
- address(user).transfer(amount) (Bridge.sol#152)
Event emitted after the call(s):
- CoinOut(_orderID,user,amount) (Bridge.sol#153)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4
INFO:Detectors:
Bridge.slitherConstructorVariables() (Bridge.sol#89-337) uses literals with too many digits:

- minTx = 1000000000000000 (Bridge.sol#99)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
Bridge.exraCoinRewards (Bridge.sol#92) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Slither:Bridge.sol analyzed (4 contracts with 93 detectors), 37 result(s) found

Solidity Static Analysis
Bridge.sol

Gas costs:
Gas requirement of function Bridge.coinIn is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 135:4:

Gas costs:
Gas requirement of function Bridge.tokenIn is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 159:4:

Similar variable names:
Bridge.setFeeWallet(address) : Variables have very similar names "feeWallet" and "newWallet".
Note: Modifiers are currently not considered by this static analysis.
Pos: 240:8:

No return:
usdtContract.balanceOf(address): Defines a return type but never explicitly returns a value.
Pos: 30:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 290:8:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 214:22:

Solhint Linter

Bridge.sol

Compiler version 0.8.17 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:6
Contract name must be in CamelCase
Pos: 1:23
Contract name must be in CamelCase
Pos: 1:38
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:47
Provide an error message for require
Pos: 9:53
Use double quotes for string literals
Pos: 37:59
Provide an error message for require
Pos: 9:75
Event name must be in CamelCase
Pos: 5:114
Event name must be in CamelCase
Pos: 5:115
Code contains empty blocks
Pos: 33:120
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:124

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

