
Project: Prime (PRIME)
Website: echelon.io
Platform: Base Chain Network
Language: Solidity
Date: June 7th, 2024

http://echelon.io


Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..6

Code Audit History ………………………………………………………………………………..7

Severity Definitions ……………………………………………………………………………....7

Claimed Smart Contract Features …………………………………………………………….. .8

Audit Summary ……………....…………………………………………………………………...9

Technical Quick Stats …..……………………………………………………………………… 10

Business Risk Analysis …..…………………………………………………………………. 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf


THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Prime (PRIME)
smart contract from echelon.io was audited extensively. The audit was performed using
manual analysis and automated software tools. This report presents all the findings
regarding the audit performed on June 7th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

Echelon is a platform focused on advancing web3 gaming by integrating blockchain

features. It provides a frictionless and compelling utility for the PRIME token, enhancing

game experiences. The platform aims to enable games to leverage blockchain technology,

with the "Parallel TCG" game as an example of its capabilities. Echelon invites developers

to build and enhance their games using its infrastructure.



Code Details
● The `PrimeToken` smart contract continues to integrate various functionalities from

OpenZeppelin, LayerZero's OFT, and custom logic specific to the Echelon

ecosystem. Below is an explanation of the contract and its key components, along

with some clarifications and improvements where necessary.

● Imports and Inheritance:

○ ReentrancyGuard: Protects against reentrant calls to functions.

○ OFT: Extends ERC20 functionality to support omnichain token transfers via

LayerZero.

○ Context: Provides information about the current execution context (e.g.,

msg.sender and msg.data).

○ ERC2771Recipient: Allows the contract to accept meta-transactions.

○ EchelonGateways and IPrimeToken: Custom interfaces and contracts

specific to the Echelon ecosystem.

● setTrustedForwarder Function: Allows the contract owner to update the trusted

forwarder address.

● invokeEchelon Function: Enables users to send PRIME and native tokens to the

Echelon ecosystem. It validates inputs, performs token transfers, and calls the

handler's custom logic.

● addEchelonHandlerContract Function: Allows the owner to register new handler

contracts, ensuring no existing gateways are overwritten.

● Send Function: It uses LayerZero’s OFT functionality to bridge tokens to another

chain.

● Meta-Transaction Support: Overrides `_msgSender` and `_msgData` to correctly

handle meta-transactions.

● The `PrimeToken` contract effectively integrates cross-chain token functionality with

meta-transaction support and custom logic handling for the Echelon ecosystem. It

ensures secure and efficient handling of token transfers and custom logic

invocations, making it a versatile solution for decentralized applications.



Audit scope

Name Code Review and Security Analysis Report for
Prime (PRIME) Smart Contract

Platform Base Chain Network

Language Solidity

File PrimeToken.sol

Smart Contract Code 0xfA980cEd6895AC314E7dE34Ef1bFAE90a5AdD21b

Audit Date June 7th,2024

Audit Result Passed

https://basescan.org/token/0xfA980cEd6895AC314E7dE34Ef1bFAE90a5AdD21b#code


Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

1 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

1
Total

Findings

0
Critical

0
High

0
Medium

0
Low

1
Informational



Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Tokenomics:
● Name: Prime

● Symbol: PRIME

● Decimals: 18

YES, This is valid.

Owner Specifications:
● Set config for LayerZero user Application.

● Update the send/receive version.

● Set the trusted path for cross-chain communication.

● Update the trusted remote address.

● Renouncing ownership.

● Allows the current owner to transfer control of the

contract to a new owner.

YES, This is valid.
We advise
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.



Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 1 very low-level issue.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? No

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED



Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Prime Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Prime Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Prime Token smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/token/0xfA980cEd6895AC314E7dE34Ef1bFAE90a5AdD21b#code


AS-IS overview

PrimeToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setTrustedForwarder external access only

owner
No Issue

3 invokeEchelon write Gas
Optimization

Refer Audit
Findings

4 addEchelonHandlerContract write Gas
Optimization

Refer Audit
Findings

5 send write Gas
Optimization

Refer Audit
Findings

6 _msgSender read Passed No Issue
7 _msgData read Passed No Issue
8 supportsInterface read Passed No Issue
9 token read Passed No Issue
10 circulatingSupply read Passed No Issue
11 _debitFrom internal Passed No Issue
12 _creditTo internal Passed No Issue
13 getTrustedForwarder read Passed No Issue
14 _setTrustedForwarder internal Passed No Issue
15 isTrustedForwarder read Passed No Issue
16 _msgSender internal Passed No Issue
17 _msgData read Passed No Issue
18 nonReentrant modifier Passed No Issue
19 _nonReentrantBefore write Passed No Issue
20 _nonReentrantAfter write Passed No Issue
21 _blockingLzReceive internal Passed No Issue
22 _storeFailedMessage internal Passed No Issue
23 nonblockingLzReceive write Passed No Issue
24 _nonblockingLzReceive internal Passed No Issue
25 retryMessage write Passed No Issue



Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

[I-01] Gas Optimization:
Description:
public' functions that are never called by the contract could be declared external functions

in the contract like:

primeToken.sol
● invokeEchelon

● addEchelonHandlerContract

● send

Recommendation: We suggest declaring these all functions external for better Gas

optimization.



Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Admin functions:

PrimeToken.sol
● setTrustedForwarder: Updated trusted forwarder address only by the owner.

● addEchelonHandlerContract: Add the Echelon handler contract address only by the

owner.

OFTCore.sol
● setUseCustomAdapterParams: The useCustomAdapterParams values can be

updated by the owner.

LzApp.sol
● setConfig: Generic config for LayerZero user Application by the owner.

● setSendVersion: The owner can update the send version.

● setReceiveVersion: The owner can update the receive version.

● forceResumeReceive: The owner can update the receive address.

● setTrustedRemote: Set the trusted path for the cross-chain communication by the

owner.

● setTrustedRemoteAddress: Update the trusted remote address by the owner.

● setPrecrime: The Precrime address can be set by the owner.

● setMinDstGas: The MinDstGas value can be set by the owner.

● setPayloadSizeLimit: The payload size limit value can be set by the owner.



Ownable.sol
● renounceOwnership: Renouncing ownership will leave the contract without an

owner.

● transferOwnership: Allows the current owner to transfer control of the contract to a

new owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.



Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 1 Informational issue in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/token/0xfA980cEd6895AC314E7dE34Ef1bFAE90a5AdD21b#code


Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix
Code Flow Diagram - Prime Token



Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

PrimeToken.sol

INFO:Detectors:
Reentrancy in PrimeToken.invokeEchelon(address,uint256,uint256,bytes)
(PrimeToken.sol#1887-1937):

External calls:
- (sent) = gateway.nativeTokenDestinationAddress.call{value: msg.value}()

(PrimeToken.sol#1906-1908)
State variables written after the call(s):
- transfer(gateway.primeDestinationAddress,_primeValue) (PrimeToken.sol#1914)

- _balances[from] = fromBalance - amount (PrimeToken.sol#1401)
- _balances[to] += amount (PrimeToken.sol#1404)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:

Event emitted after the call(s):
- SendToChain(_dstChainId,_from,_toAddress,amount) (PrimeToken.sol#1783)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
PrimeToken._msgData() (PrimeToken.sol#2022-2030) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.0 (PrimeToken.sol#4) allows old versions
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in PrimeToken.invokeEchelon(address,uint256,uint256,bytes)
(PrimeToken.sol#1887-1937):

- (sent) = gateway.nativeTokenDestinationAddress.call{value: msg.value}()
(PrimeToken.sol#1906-1908)



Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Parameter PrimeToken.setTrustedForwarder(address)._forwarder (PrimeToken.sol#1862) is not
in mixedCase
Parameter PrimeToken.invokeEchelon(address,uint256,uint256,bytes)._handlerAddress
(PrimeToken.sol#1888) is not in mixedCase
Parameter PrimeToken.invokeEchelon(address,uint256,uint256,bytes)._id (PrimeToken.sol#1889)
is not in mixedCase
Parameter PrimeToken.invokeEchelon(address,uint256,uint256,bytes)._primeValue
(PrimeToken.sol#1890) is not in mixedCase
Parameter PrimeToken.invokeEchelon(address,uint256,uint256,bytes)._data
(PrimeToken.sol#1891) is not in mixedCase
Parameter PrimeToken.addEchelonHandlerContract(address,address,address)._contractAddress
(PrimeToken.sol#1948) is not in mixedCase
Parameter
PrimeToken.addEchelonHandlerContract(address,address,address)._nativeTokenDestinationAddr
ess (PrimeToken.sol#1949) is not in mixedCase
Parameter
PrimeToken.addEchelonHandlerContract(address,address,address)._primeDestinationAddress
(PrimeToken.sol#1950) is not in mixedCase
Parameter PrimeToken.send(address,uint16,uint256,address,address,bytes)._from
(PrimeToken.sol#1988) is not in mixedCase
Parameter PrimeToken.send(address,uint16,uint256,address,address,bytes)._dstChainId
(PrimeToken.sol#1989) is not in mixedCase
Parameter PrimeToken.send(address,uint16,uint256,address,address,bytes)._amount
(PrimeToken.sol#1990) is not in mixedCase
Parameter PrimeToken.send(address,uint16,uint256,address,address,bytes)._refundAddress
(PrimeToken.sol#1991) is not in mixedCase
Parameter
PrimeToken.send(address,uint16,uint256,address,address,bytes)._zroPaymentAddress
(PrimeToken.sol#1992) is not in mixedCase
Parameter PrimeToken.send(address,uint16,uint256,address,address,bytes)._adapterParams
(PrimeToken.sol#1993) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
BytesLib.toAddress(bytes,uint256) (PrimeToken.sol#464-473) uses literals with too many digits:

- tempAddress = mload(uint256)(_bytes + 0x20 + _start) /
0x1000000000000000000000000 (PrimeToken.sol#469)
ExcessivelySafeCall.slitherConstructorConstantVariables() (PrimeToken.sol#679-811) uses
literals with too many digits:

- LOW_28_MASK = 0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff
(PrimeToken.sol#680-681)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Slither:PrimeToken.sol analyzed (24 contracts with 93 detectors), 155 result(s) found



Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

PrimeToken.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
PrimeToken.invokeEchelon(address,uint256,uint256,bytes): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
Pos: 1887:4:

Inline assembly:
The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 1764:8:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 1906:28:

Gas costs:
Gas requirement of function OFT.setMinDstGas is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1663:4:

Gas costs:
Gas requirement of function PrimeToken.send is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1987:4:

This on local calls:
Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes more gas than normal local calls.
Pos: 1694:119:



Constant/View/Pure functions:
OFTCore._creditTo(uint16,address,uint256) : Potentially should be constant/view/pure but is not.
Note: Modifiers are currently not considered by this static analysis.
Pos: 1805:4:

No return:
OFTCore._creditTo(uint16,address,uint256): Defines a return type but never explicitly returns a
value.
Pos: 1805:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 1719:8:



Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

PrimeToken.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:3
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:189
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:258
Variable "mlengthmod" is unused
Pos: 21:369
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:408
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:467
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:478
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:489
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:500
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:511
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:522
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:533
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:544
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:555
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:565
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:615
Explicitly mark visibility of state
Pos: 5:679
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:711



Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:763
Provide an error message for require
Pos: 9:798
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:800
Code contains empty blocks
Pos: 1:994
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1016
Error message for require is too long
Pos: 9:1058
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1099
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1137
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 13:1172
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1215
Error message for require is too long
Pos: 9:1365
Error message for require is too long
Pos: 9:1392
Error message for require is too long
Pos: 9:1393
Error message for require is too long
Pos: 9:1398
Error message for require is too long
Pos: 9:1447
Error message for require is too long
Pos: 9:1452
Error message for require is too long
Pos: 9:1482
Error message for require is too long
Pos: 9:1483
Code contains empty blocks
Pos: 24:1529
Code contains empty blocks
Pos: 24:1549
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1570
Error message for require is too long
Pos: 9:1580
Error message for require is too long
Pos: 9:1590
Check result of "send" call
Pos: 9:1592
Avoid to use inline assembly. It is acceptable only in rare cases



Pos: 9:1604
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1684
Code contains empty blocks
Pos: 53:1684
Error message for require is too long
Pos: 9:1707
Error message for require is too long
Pos: 9:1717
Error message for require is too long
Pos: 9:1718
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1740
Code contains empty blocks
Pos: 68:1740
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:1763
Error message for require is too long
Pos: 13:1798
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1809
Code contains empty blocks
Pos: 125:1809
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1852
Code contains empty blocks
Pos: 71:1855
Error message for require is too long
Pos: 9:1892
Error message for require is too long
Pos: 9:1951

Software analysis result:
This software reported many false positive results and some were informational issues.

So, those issues can be safely ignored.




