
Project: SmarDex Token
Website: smardex.io

 Platform: Base Chain Network
Language: Solidity
Date: June 21st, 2024

http://smardex.io

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. .7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 21

● Solhint Linter …………………………………………………………………….……….. 22

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the SmarDex Token
smart contract from smardex.io/ was audited extensively. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on June 21st, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

● SmarDex is a leading innovation for liquidity providers and traders who want to stay

ahead of the game. Launch the app and start trading today.

● Smardex is a decentralized finance (DeFi) platform that aims to revolutionize

trading and liquidity provision. It offers innovative solutions for users to engage in

secure and efficient DeFi activities, including trading, staking, and liquidity

management.

● The platform focuses on providing transparent and robust financial tools to enhance

the DeFi experience.

Code Details
● The `TokenImplementation` contract is an advanced ERC20 token implementation

with several additional features.

● It is based on the OpenZeppelin ERC20 implementation and includes support for

EIP-712 (typed structured data hashing and signing) and EIP-2612 (permit function

to approve spending via signatures). The contract also uses the Beacon Proxy

pattern for upgradeability and includes custom initialization logic.

● This contract is suitable for creating a customized ERC20 token with advanced

features like off-chain approvals and metadata updates, managed by the token

owner.

Audit scope

Name Code Review and Security Analysis Report for
SmarDex Token Smart Contract

Platform Base Chain Network

Language Solidity

File TokenImplementation.sol

Smart Contract Code 0x5537857664b0f9efe38c9f320f75fef23234d904

Audit Date June 21st,2024

Audit Result Passed

https://basescan.org/address/0x5537857664b0f9efe38c9f320f75fef23234d904#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

0 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

0
Total

Findings

0
Critical

0
High

0
Medium

0
Low

0
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Ownership Control:
● Unlimited token minting.

● The Owner can burn anyone’s token.

● The current owner can transfer the ownership.

● The owner can renounce ownership.

YES, This is valid.
We advise renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Well Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 0 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? Yes

Is it used Open Source? Yes

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in SmarDex Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the SmarDex Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a SmarDex Token smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/address/0x5537857664b0f9efe38c9f320f75fef23234d904#code

AS-IS overview

TokenImplementation.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initialize write initializer No Issue
3 _initializeNativeToken internal Passed No Issue
4 _initializePermitStateIfNeeded internal Passed No Issue
5 name read Passed No Issue
6 symbol read Passed No Issue
7 owner read Passed No Issue
8 decimals read Passed No Issue
9 totalSupply read Passed No Issue

10 chainId read Passed No Issue
11 nativeContract read Passed No Issue
12 balanceOf read Passed No Issue
13 transfer write Passed No Issue
14 allowance read Passed No Issue
15 approve write Passed No Issue
16 transferFrom write Passed No Issue
17 increaseAllowance write Passed No Issue
18 decreaseAllowance write Passed No Issue
19 _transfer internal Passed No Issue
20 mint write access only

Owner
No Issue

21 _mint internal Passed No Issue
22 burn write access only

Owner
No Issue

23 _burn internal Passed No Issue
24 _approve internal Passed No Issue
25 updateDetails write access only

Owner
No Issue

26 onlyOwner modifier Passed No Issue
27 initializer modifier Passed No Issue
28 _domainSeparatorV4 internal Passed No Issue
29 _buildDomainSeparator internal Passed No Issue
30 _hashTypedDataV4 internal Passed No Issue
31 permit write Passed No Issue
32 DOMAIN_SEPARATOR read Passed No Issue
33 eip712Domain read Passed No Issue
34 _eip712DomainVersion internal Passed No Issue
35 _eip712DomainNameHashed internal Passed No Issue
36 _eip712DomainSalt internal Passed No Issue
37 nonces read Passed No Issue
38 _useNonce internal Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

No Very-Low-severity vulnerabilities were found.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Admin functions:

TokenImplementation.sol
● mint: The owner can mint new tokens.

● burn: The owner can burn tokens.

● updateDetails: The owner can update details.

Ownable.sol
● transferOwnership: Allows the current owner to transfer control of the contract to a

newOwner.

● renounceOwnership: Renounce the ownership of the contract to leave the contract

without an owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed no issue in the smart

contracts. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Well Secured”.

https://basescan.org/address/0x5537857664b0f9efe38c9f320f75fef23234d904#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram -SmarDex Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

TokenImplementation.sol

INFO:Detectors:
TokenImplementation.permit(address,address,uint256,uint256,uint8,bytes32,bytes32)
(TokenImplementation.sol#1216-1252) uses timestamp for comparisons
 Dangerous comparisons:
 - require(bool,string)(block.timestamp <= deadline_,ERC20Permit: expired deadline)
(TokenImplementation.sol#1230)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Pragma version^0.8.0 (TokenImplementation.sol#3) allows old versions
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in Address.functionDelegateCall(address,bytes,string)
(TokenImplementation.sol#176-185):
 - (success,returndata) = target.delegatecall(data) (TokenImplementation.sol#183)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Function TokenImplementation.DOMAIN_SEPARATOR() (TokenImplementation.sol#1258-1260)
is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:TokenImplementation.sol analyzed (13 contracts with 93 detectors), 50 result(s)
found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

TokenImplementation.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 347:16:

Gas costs:
Gas requirement of function TokenImplementation.burn is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 232:4:

Gas costs:
Gas requirement of function TokenImplementation.mint is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 220:4:

Similar variable names:
TokenImplementation.mint(address,uint256) : Variables have very similar names "account_" and
"amount_". Note: Modifiers are currently not considered by this static analysis.
Pos: 221:14:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 209:8:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

TokenImplementation.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:3
global import of path @openzeppelin/contracts/access/Ownable.sol is not allowed. Specify
names to import individually or bind all exports of the module into a name (import "path" as
Name)
Pos: 1:5
global import of path @openzeppelin/contracts/utils/Context.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name (import "path" as Name)
Pos: 1:6
global import of path @openzeppelin/contracts/proxy/beacon/BeaconProxy.sol is not allowed.
Specify names to import individually or bind all exports of the module into a name (import "path"
as Name)
Pos: 1:7
global import of path @openzeppelin/contracts/utils/cryptography/ECDSA.sol is not allowed.
Specify names to import individually or bind all exports of the module into a name (import "path"
as Name)
Pos: 1:8
global import of path @openzeppelin/contracts/utils/Counters.sol is not allowed. Specify names
to import individually or bind all exports of the module into a name (import "path" as Name)
Pos: 1:10
Explicitly mark visibility of state
Pos: 5:51
Visibility modifier must be first in list of modifiers
Pos: 19:83
Error message for require is too long
Pos: 9:188
Error message for require is too long
Pos: 9:201
Error message for require is too long
Pos: 9:208
Error message for require is too long
Pos: 9:209
Error message for require is too long
Pos: 9:212
Error message for require is too long
Pos: 9:236

Error message for require is too long
Pos: 9:239
Error message for require is too long
Pos: 9:247
Error message for require is too long
Pos: 9:248
Code contains empty blocks
Pos: 83:325
Avoid making time-based decisions in your business logic
Pos: 17:346

Software analysis result:
This software reported many false positive results and some were informational issues.

So, those issues can be safely ignored.

