
Project: USDC Token
Website: circle.com/en/usdc

 Platform: Base Chain Network
Language: Solidity
Date: May 29th, 2024

https://www.circle.com/en/usdc

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..6

Code Audit History ………………………………………………………………………………..7

Severity Definitions ……………………………………………………………………………....7

Claimed Smart Contract Features …………………………………………………………….. .8

Audit Summary ……………....…………………………………………………………………...9

Technical Quick Stats …..……………………………………………………………………… 10

Business Risk Analysis …..…………………………………………………………………. 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 25

● Solidity static analysis ….……………………………………………………………….. 27

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the USDC token
smart contract from circle.com was audited extensively. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on May 29th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

USD Coin (USDC) is a digital dollar stablecoin issued by Circle, fully backed by US dollar

reserves. It offers global, near-instant, low-cost transactions and is regulated with

transparent monthly reserve attestations. USDC is widely used across numerous

blockchain networks and is designed to maintain a 1:1 value with the US dollar, making it a

stable and secure digital currency. Businesses and individuals can easily mint and redeem

USDC, ensuring liquidity and reliability.

Code Details
● This Solidity code defines a token contract called FiatTokenV2_2, which is an

upgraded version of the original FiatToken contract. Let's break down its key

features:

○ Versioning: The contract has multiple versions (FiatTokenV1,

FiatTokenV1_1, FiatTokenV2, FiatTokenV2_1, FiatTokenV2_2). Each version

introduces new functionalities or upgrades existing ones. The versioning

allows for smooth upgrades without disrupting existing functionality.

○ Initial Setup: The contract initializes various parameters such as name,

symbol, currency, decimals, master minter, pauser, blacklister, and owner. It

ensures that these parameters are set correctly during contract deployment.

○ Minting and Burning: The contract supports minting and burning of tokens.

Minters are designated addresses that can mint new tokens, subject to an

allowance specified by the master minter.

○ Token Transfers: It facilitates token transfers between addresses. The

transfer, transferFrom, and approve functions handle standard ERC-20 token

transfer functionality.

○ Authorization: The contract implements ERC-3009 and ERC-2612

standards for token authorization. Users can approve spending tokens on

their behalf without interacting with the contract directly. This functionality

enhances security and usability.

○ Blacklisting: The contract allows for blacklisting specific accounts,

preventing them from sending or receiving tokens. This feature is useful for

compliance and security purposes.

○ Pausing: The contract can be paused and unpaused by the pauser address.

When paused, token transfers are disabled, adding an extra layer of security

and control.

○ Rescue Functionality: The contract includes a rescuer address that can

recover ERC-20 tokens mistakenly sent to the contract address. This feature

prevents tokens from being lost irreversibly.

○ Domain Separation: The contract uses domain separation for enhanced

security in signature verification. It generates a unique domain separator for

each version of the contract.

○ Upgradeability: The contract design allows for future upgrades by

introducing new versions (FiatTokenV2_1, FiatTokenV2_2). Upgrades can

introduce new functionalities or fix bugs while maintaining compatibility with

existing applications.

● Overall, the FiatTokenV2_2 contract provides a comprehensive set of features for

managing and transferring ERC-20 tokens, with a focus on security, flexibility, and

upgradability.

Audit scope

Name Code Review and Security Analysis Report for
USDC Token Smart Contract

Platform Base Chain Network

Language Solidity

File FiatTokenV2_2.sol

Smart Contract Code 0x2ce6311ddae708829bc0784c967b7d77d19fd779

Audit Date May 29th,2024

Audit Result Passed

https://basescan.org/address/0x2ce6311ddae708829bc0784c967b7d77d19fd779#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

2 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

2
Total

Findings

0
Critical

0
High

0
Medium

0
Low

2
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Master Minter Specifications:
● Adds or updates a new minter address with a mint

allowance.

● Removes a minter address.

Rescuer Specifications:
● Rescue ERC20 tokens are locked up in this contract.

Blacklister Specifications:
● Add/Remove account to blacklist addresses.

Pausable Specifications:
● The owner calls to pause, which triggers the stopped

state.

● The owner calls to unpause and returns to a normal

state.

YES, This is valid.

Owner Specifications:
● Update the master minter address.

● Update the rescuer address.

● Update the blacklister address.

● Updates the pauser address.

● Allows the current owner to transfer control of the

contract to a new owner.

YES, This is valid.
 We advise
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 2 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Yes

Blacklist Check Yes

Can Mint? Yes

Is it a Proxy Contract? No

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in USDC Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the USDC Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a USDC Token smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/address/0x2ce6311ddae708829bc0784c967b7d77d19fd779#code

AS-IS overview

FiatTokenV2_2.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initializeV2_2 write Missing

required error
message

Refer Audit
Findings

3 _chainId2 internal Passed No Issue
4 _domainSeparator internal Passed No Issue
5 permit external Passed No Issue
6 transferWithAuthorization external Passed No Issue
7 receiveWithAuthorization external Passed No Issue
8 cancelAuthorization external Passed No Issue
9 _setBlacklistState external Passed No Issue

10 _setBalance internal Passed No Issue
11 _isBlacklisted internal Passed No Issue
12 _balanceOf internal Passed No Issue
13 approve external Passed No Issue
14 permit external Passed No Issue
15 increaseAllowance external Passed No Issue
16 decreaseAllowance external Passed No Issue
17 initializeV2_1 external Passed No Issue
18 version external Passed No Issue
19 initializeV2 external Passed No Issue
20 increaseAllowance external Passed No Issue
21 decreaseAllowance external Passed No Issue
22 transferWithAuthorization external Passed No Issue
23 receiveWithAuthorization external Passed No Issue
24 cancelAuthorization external Passed No Issue
25 permit external Passed No Issue
26 _increaseAllowance internal Passed No Issue
27 _decreaseAllowance internal Passed No Issue
28 initialize write Passed No Issue
29 onlyMinters modifier Passed No Issue
30 mint external access only

Minters
No Issue

31 onlyMasterMinter modifier Passed No Issue
32 minterAllowance external Passed No Issue
33 isMinter external Passed No Issue
34 allowance external Passed No Issue
35 totalSupply external Passed No Issue
36 balanceOf external Passed No Issue
37 approve external Passed No Issue
38 _approve internal Passed No Issue

39 transferFrom external Passed No Issue
40 transfer external Passed No Issue
41 _transfer internal Passed No Issue
42 configureMinter external access only

Master Minter
No Issue

43 removeMinter external access only
Master Minter

No Issue

44 burn external access only
Minters

No Issue

45 updateMasterMinter external Centralized
Ownership

and Privileges
Management

Refer Audit
Findings

46 _blacklist internal Passed No Issue
47 _unBlacklist internal Passed No Issue
48 _setBlacklistState internal Passed No Issue
49 _setBalance internal Passed No Issue
50 _isBlacklisted internal Passed No Issue
51 _balanceOf internal Passed No Issue
52 nonces external Passed No Issue
53 _permit internal Passed No Issue
54 _permit internal Passed No Issue
55 authorizationState external Passed No Issue
56 _transferWithAuthorization internal Passed No Issue
57 _transferWithAuthorization internal Passed No Issue
58 _receiveWithAuthorization internal Passed No Issue
59 _receiveWithAuthorization internal Passed No Issue
60 _cancelAuthorization internal Passed No Issue
61 _cancelAuthorization internal Passed No Issue
62 _requireValidSignature read Passed No Issue
63 _requireUnusedAuthorization internal Passed No Issue
64 _requireValidAuthorization read Passed No Issue
65 _markAuthorizationAsUsed write Passed No Issue
66 _increaseAllowance internal Passed No Issue
67 _decreaseAllowance internal Passed No Issue
68 rescuer external Passed No Issue
69 onlyRescuer modifier Passed No Issue
70 rescueERC20 external access only

Rescuer
No Issue

71 updateRescuer external Centralized
Ownership

and Privileges
Management

Refer Audit
Findings

72 onlyBlacklister modifier Passed No Issue
73 notBlacklisted modifier Passed No Issue
74 isBlacklisted external Passed No Issue
75 blacklist external Centralized

Ownership
Refer Audit

Findings

and Privileges
Management

76 unBlacklist external Centralized
Ownership

and Privileges
Management

Refer Audit
Findings

77 updateBlacklister external Centralized
Ownership

and Privileges
Management

Refer Audit
Findings

78 _isBlacklisted internal Passed No Issue
79 _blacklist internal Passed No Issue
80 _unBlacklist internal Passed No Issue
81 whenNotPaused modifier Passed No Issue
82 onlyPauser modifier Passed No Issue
83 pause external access only

Pauser
No Issue

84 unpause external access only
Pauser

No Issue

85 updatePauser external Centralized
Ownership

and Privileges
Management

Refer Audit
Findings

86 owner external Passed No Issue
87 setOwner internal Passed No Issue
88 onlyOwner modifier Passed No Issue
89 transferOwnership external Centralized

Ownership
and Privileges
Management

Refer Audit
Findings

90 DOMAIN_SEPARATOR external Passed No Issue
91 _domainSeparator internal Passed No Issue
92 _approve internal Passed No Issue
93 _transfer internal Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

[I-01] Centralization:
Description:
In this contract Blacklistable.sol "blacklister" has authority to the following function:

● blacklist

● unBlacklist

Blacklister can blacklist any user.

This contract onlyOwner has authority to the following function:

● updateBlacklister

● updateMasterMinter

● transferOwnership

● updatePauser

● updateRescuer

Recommendation: We suggest carefully managing the onlyOwner account's private keys

to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism

or smart-contract-based accounts with enhanced security practices.

e.g., Multisignature wallets.

[I-02] Missing required error message:

Description:
There is no error message required.

Recommendation: We suggest setting relevant error messages to identify the failure of

the transaction.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Admin functions:

FiatTokenV1.sol
● configureMinter: Adds or updates a new minter address with a mint allowance only

by the Master Minter of the owner.

● removeMinter: Removes a minter address only by the Master Minter of the owner.

● updateMasterMinter: The owner can update the master minter address.

Rescuable.sol
● rescueERC20: Rescue ERC20 tokens are locked up in this contract only by the

Rescuer of the owner.

● updateRescuer: The owner can update the rescuer address.

Blacklistable.sol
● blacklist: Adds account to blacklist only by the Blacklister of the owner.

● unBlacklist: Removes account from blacklist only by the Blacklister of the owner.

● updateBlacklister: The owner can update the blacklister address.

Pausable.sol
● pause: The owner calls to pause, which triggers the stopped state.

● unpause: The owner calls to unpause, and returns to normal state.

● updatePauser: Updates the pauser address only by the owner.

Ownable.sol
● transferOwnership: Allows the current owner to transfer control of the contract to a

newOwner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 2 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://basescan.org/address/0x2ce6311ddae708829bc0784c967b7d77d19fd779#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - USDC Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

FiatTokenV2_2.sol

INFO:Detectors:
FiatTokenV2_2.permit(address,address,uint256,uint256,bytes).owner (FiatTokenV2_2.sol#2232)
shadows:
 - Ownable.owner() (FiatTokenV2_2.sol#812-814) (function)
FiatTokenV2_2.permit(address,address,uint256,uint256,uint8,bytes32,bytes32).owner
(FiatTokenV2_2.sol#2409) shadows:
 - Ownable.owner() (FiatTokenV2_2.sol#812-814) (function)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
EIP3009._requireValidAuthorization(address,bytes32,uint256,uint256)
(FiatTokenV2_2.sol#1367-1379) uses timestamp for comparisons
 Dangerous comparisons:
 - require(bool,string)(now > validAfter,FiatTokenV2: authorization is not yet valid)
(FiatTokenV2_2.sol#1373-1376)
 - require(bool,string)(now < validBefore,FiatTokenV2: authorization is expired)
(FiatTokenV2_2.sol#1377)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
FiatTokenV2_2._chainId() (FiatTokenV2_2.sol#2207-2213) uses assembly
 - INLINE ASM (FiatTokenV2_2.sol#2209-2211)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
FiatTokenV2_2.initializeV2_2(address[],string) (FiatTokenV2_2.sol#2177-2201) has costly
operations inside a loop:
 - delete _deprecatedBlacklisted[accountsToBlacklist[i]] (FiatTokenV2_2.sol#2195)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop
INFO:Detectors:
FiatTokenV1._balanceOf(address) (FiatTokenV2_2.sol#1899-1906) is never used and should be
removed

FiatTokenV1._isBlacklisted(address) (FiatTokenV2_2.sol#1884-1892) is never used and should
be removed
FiatTokenV1._setBalance(address,uint256) (FiatTokenV2_2.sol#1877-1879) is never used and
should be removed
FiatTokenV1._setBlacklistState(address,bool) (FiatTokenV2_2.sol#1865-1870) is never used and
should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version>=0.6.0<0.8.0 (FiatTokenV2_2.sol#4) is too complex
solc-0.6.12 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in SignatureChecker.isValidERC1271SignatureNow(address,bytes32,bytes)
(FiatTokenV2_2.sol#712-728):
 - (success,result) =
signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector,digest,signature))
(FiatTokenV2_2.sol#717-723)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Function EIP712Domain.DOMAIN_SEPARATOR() (FiatTokenV2_2.sol#767-769) is not in
mixedCase
Parameter FiatTokenV1.mint(address,uint256)._amount (FiatTokenV2_2.sol#1578) is not in
mixedCase
Parameter FiatTokenV1.burn(uint256)._amount (FiatTokenV2_2.sol#1817) is not in mixedCase
Parameter FiatTokenV1.updateMasterMinter(address)._newMasterMinter
(FiatTokenV2_2.sol#1837) is not in mixedCase
Contract FiatTokenV1_1 (FiatTokenV2_2.sol#1914-1916) is not in CapWords
Contract FiatTokenV2_1 (FiatTokenV2_2.sol#2139-2164) is not in CapWords
Function FiatTokenV2_1.initializeV2_1(address) (FiatTokenV2_2.sol#2144-2155) is not in
mixedCase
Contract FiatTokenV2_2 (FiatTokenV2_2.sol#2170-2446) is not in CapWords
Function FiatTokenV2_2.initializeV2_2(address[],string) (FiatTokenV2_2.sol#2177-2201) is not
in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:FiatTokenV2_2.sol analyzed (23 contracts with 93 detectors), 66 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

FiatTokenV2_2.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
SafeERC20.safeDecreaseAllowance(contract IERC20,address,uint256): Could potentially lead to
re-entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis.
Pos: 497:4:

Inline assembly:
The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 2209:11:

Block timestamp:
Use of "now": "now" does not mean current time. "now" is an alias for "block.timestamp".
"block.timestamp" can be influenced by miners to a certain degree, be careful.
Pos: 1454:60:

Low level calls:
Use of "delegatecall": should be avoided whenever possible. External code that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.
Pos: 438:50:

Gas costs:
Gas requirement of function FiatTokenV2_2.initializeV2_2 is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 2177:7:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

Pos: 2189:11:

Constant/View/Pure functions:FiatTokenV2_2._domainSeparator() : Is constant but potentially
should not be. Note: Modifiers are currently not considered by this static analysis.
Pos: 2218:7:

Similar variable names:FiatTokenV1.minterAllowance(address) : Variables have very similar
names "minter" and "minters". Note: Modifiers are currently not considered by this static analysis.
Pos: 1620:32:

Guard conditions:Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a
failing external component.
Pos: 2355:11:

Delete from dynamic array:Using "delete" on an array leaves a gap. The length of the array
remains the same. If you want to remove the empty position you need to shift items manually and
update the "length" property.
Pos: 2198:11:

Data truncated:Division of integer values yields an integer value again. That means e.g. 10 / 100
= 0 instead of 0.1 since the result is an integer again. This does not hold for division of (only)
literal values since those yield rational constants.
Pos: 255:15:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

FiatTokenV2_2.sol

Compiler version >=0.6.0 <0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 58:1453
Error message for require is too long
Pos: 9:1823
Error message for require is too long
Pos: 9:1824
Error message for require is too long
Pos: 9:1837
Code contains empty blocks
Pos: 1:1913
Contract name must be in CamelCase
Pos: 1:1913
Contract name must be in CamelCase
Pos: 1:2138
Function name must be in mixedCase
Pos: 5:2143
Contract name must be in CamelCase
Pos: 1:2169
Function name must be in mixedCase
Pos: 5:2176
Error message for require is too long
Pos: 13:2189
Avoid using inline assembly. It is acceptable only in rare cases
Pos: 9:2208
Error message for require is too long
Pos: 9:2350
Error message for require is too long
Pos: 9:2354

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

