
Project: Wormhole Token
Website: w-token

 Platform: Base Chain Network
Language: Solidity
Date: May 29th, 2024

https://wormhole.com/ecosystem/w-token

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..6

Code Audit History ………………………………………………………………………………..7

Severity Definitions ……………………………………………………………………………....7

Claimed Smart Contract Features …………………………………………………………….. .8

Audit Summary ……………....…………………………………………………………………...9

Technical Quick Stats …..……………………………………………………………………… 10

Business Risk Analysis …..…………………………………………………………………. 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Wormhole
Token smart contract from wormhole.com/ecosystem/w-token was audited extensively.
The audit has been performed using manual analysis as well as using automated software
tools. This report presents all the findings regarding the audit performed on May 29th,
2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

● W is the native token that powers the Wormhole platform.

● The W token powers the Wormhole platform and is designed for multichain use.

● It initially launched as a Solana SPL token, with ERC20 functionality to be added

later through Wormhole’s Native Token Transfers.

● The W token has a max supply of 10 billion and an initial circulating supply of 1.8

billion. 82% of the tokens are initially locked and will unlock over four years

according to a vesting schedule.

● W will initially launch as a native Solana SPL token. ERC20 functionality will be

enabled post-launch through Wormhole's Native Token Transfers (NTT), allowing

seamless transfers across any Wormhole-connected network.

Code Details
● This Solidity contract, `WToken`, is an upgradeable governance token with

controlled minting and burning capabilities, utilizing the OpenZeppelin library for

various functionalities. Below, break down the main components and their

functionalities:

● Key Features and Components:
○ Token Minting and Burning:

■ mint: Allows minting of new tokens, with auto-delegation if the

recipient doesn't have a delegate.

■ burn: Allows burning of the caller's tokens, restricted by

`BURNER_ROLE`.

■ burnFrom: Not implemented to prevent unintended use.

○ Governance and Voting:
■ Uses a timestamp-based clock for governance functions (`clock`,

`CLOCK_MODE`).

■ maxSupply: Sets the maximum token supply.

■ setDelegate: Allows setting delegate votes for an account, controlled

by `SET_DELEGATE_ROLE`.

● This contract combines the functionality of a traditional ERC20 token with enhanced

features for minting, burning, and governance, all while ensuring secure, role-based

access control and the capability to upgrade the contract as needed. The use of

OpenZeppelin libraries provides robust, audited code, enhancing security and

reliability.

Audit scope

Name Code Review and Security Analysis Report for
Wormhole Token Smart Contract

Platform Base Chain Network

Language Solidity

File WToken.sol

Smart Contract Code 0x344518934533ec82b49ea533b196dce5cfa64411

Audit Date May 29th,2024

Audit Result Passed

https://basescan.org/address/0x344518934533ec82b49ea533b196dce5cfa64411#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

1 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

1
Total

Findings

0
Critical

0
High

0
Medium

0
Low

1
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Key Features:
● Token Minting and Burning:

○ mint: Allows minting new tokens to a specified

account, with auto-delegation if the recipient

doesn’t have a delegate.

○ burn: Allows burning of tokens held by the caller,

restricted to addresses with the

`BURNER_ROLE`.

○ burnFrom: Not implemented to prevent

unintended use.

● Governance and Voting:
○ Implements a timestamp-based clock for

governance functions (`clock`,

`CLOCK_MODE`).

○ `_maxSupply`: Sets the maximum token supply.

○ `setDelegate`: Allows setting a delegate for an

account, controlled by the

`SET_DELEGATE_ROLE`.

YES, This is valid.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 1 very low-level issue.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? Yes

Is it used Open Source? Yes

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? No

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Wormhole Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Wormhole Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Wormhole Token smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

-

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://basescan.org/address/0x344518934533ec82b49ea533b196dce5cfa64411#code

AS-IS overview

WToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initialize external initializer No Issue
3 grantMinterAndBurner external Passed No Issue
4 clock read Passed No Issue
5 CLOCK_MODE read Passed No Issue
6 burn write Passed No Issue
7 burnFrom write Passed No Issue
8 mint external Passed No Issue
9 setDelegate external Passed No Issue

10 _maxSupply internal Passed No Issue
11 nonces read Passed No Issue
12 _update internal Passed No Issue
13 _authorizeUpgrade internal Unused

function
Refer Audit

Findings
14 _getAccessControlDefaultAdminR

ulesStorage
write Passed No Issue

15 __AccessControlDefaultAdminRule
s_init

internal access only
Initializing

No Issue

16 __AccessControlDefaultAdminRule
s_init_unchained

internal access only
Initializing

No Issue

17 supportsInterface read Passed No Issue
18 owner read Passed No Issue
19 grantRole write Passed No Issue
20 revokeRole write Passed No Issue
21 renounceRole write Passed No Issue
22 _grantRole internal Passed No Issue
23 _revokeRole internal Passed No Issue
24 _setRoleAdmin internal Passed No Issue
25 defaultAdmin read Passed No Issue
26 pendingDefaultAdmin read Passed No Issue
27 defaultAdminDelay read Passed No Issue
28 pendingDefaultAdminDelay read Passed No Issue
29 defaultAdminDelayIncreaseWait read Passed No Issue
30 beginDefaultAdminTransfer write default Admin

Role
No Issue

31 _beginDefaultAdminTransfer internal Passed No Issue
32 cancelDefaultAdminTransfer write default Admin

Role
No Issue

33 _cancelDefaultAdminTransfer internal Passed No Issue
34 acceptDefaultAdminTransfer write Passed No Issue
35 _acceptDefaultAdminTransfer internal Passed No Issue

36 changeDefaultAdminDelay write default Admin
Role

No Issue

37 _changeDefaultAdminDelay internal Passed No Issue
38 rollbackDefaultAdminDelay write default Admin

Role
No Issue

39 _rollbackDefaultAdminDelay internal Passed No Issue
40 _delayChangeWait internal Passed No Issue
41 _setPendingDefaultAdmin write Passed No Issue
42 _setPendingDelay write Passed No Issue
43 _isScheduleSet write Passed No Issue
44 _hasSchedulePassed read Passed No Issue
45 __ERC20Burnable_init internal access only

Initializing
No Issue

46 __ERC20Burnable_init_unchained internal access only
Initializing

No Issue

47 burn write Passed No Issue
48 burnFrom write Passed No Issue
49 __ERC20Permit_init internal access only

Initializing
No Issue

50 __ERC20Permit_init_unchained internal access only
Initializing

No Issue

51 permit write Passed No Issue
52 nonces read Passed No Issue
53 DOMAIN_SEPARATOR external Passed No Issue
54 __ERC20Votes_init internal access only

Initializing
No Issue

55 __ERC20Votes_init_unchained internal access only
Initializing

No Issue

56 _maxSupply internal Passed No Issue
57 _update internal Passed No Issue
58 _getVotingUnits internal Passed No Issue
59 numCheckpoints read Passed No Issue
60 checkpoints read Passed No Issue
61 _getERC20Storage write Passed No Issue
62 __ERC20_init internal access only

Initializing
No Issue

63 __ERC20_init_unchained internal access only
Initializing

No Issue

64 name read Passed No Issue
65 symbol read Passed No Issue
66 decimals read Passed No Issue
67 totalSupply read Passed No Issue
68 balanceOf read Passed No Issue
69 transfer write Passed No Issue
70 allowance read Passed No Issue
71 approve write Passed No Issue
72 transferFrom write Passed No Issue
73 _transfer internal Passed No Issue

74 _update internal Passed No Issue
75 _mint internal Passed No Issue
76 _burn internal Passed No Issue
77 _approve internal Passed No Issue
78 _approve internal Passed No Issue
79 _spendAllowance internal Passed No Issue
80 onlyProxy modifier Passed No Issue
81 notDelegated modifier Passed No Issue
82 __UUPSUpgradeable_init internal access only

Initializing
No Issue

83 __UUPSUpgradeable_init_unchain
ed

internal access only
Initializing

No Issue

84 proxiableUUID external Passed No Issue
85 upgradeToAndCall write access only

Proxy
No Issue

86 _checkProxy internal Passed No Issue
87 _checkNotDelegated internal Passed No Issue
88 _authorizeUpgrade internal Passed No Issue
89 _upgradeToAndCallUUPS write Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:
[I-01] Unused function:

 function _authorizeUpgrade(address /* newImplementation */)

internal view override {

 _checkRole(DEFAULT_ADMIN_ROLE);

 }

Description:
The "_authorizeUpgrade" function is defined in the contract but never used.

Recommendation: We suggest removing this function.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Admin functions:

AccessControlDefaultAdminRulesUpgradeable.sol
● grantRole: Grants `role` to `account` can be set by the admin.

● revokeRole: Revokes `role` from `account` by the admin.

● renounceRole: Renounce Role from `account` by the admin.

● _revokeRole: Revokes `role` from `account` by the admin.

● _setRoleAdmin: The current admin can place all roles.

● beginDefaultAdminTransfer: The current admin can transfer the default admin

address.

● cancelDefaultAdminTransfer: The current admin can cancel the default admin

address.

● changeDefaultAdminDelay: Delay time can be set by default admin.

● rollbackDefaultAdminDelay: Default admin can rollback.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 1 Informational issue in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/address/0x344518934533ec82b49ea533b196dce5cfa64411#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Wormhole Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

WToken.sol

INFO:Detectors:
VotesUpgradeable.__Votes_init() (WToken.sol#2152-2153) is never used and should be
removed
VotesUpgradeable.__Votes_init_unchained() (WToken.sol#2155-2156) is never used and should
be removed
VotesUpgradeable._add(uint208,uint208) (WToken.sol#2286-2288) is never used and should
be removed
VotesUpgradeable._getTotalSupply() (WToken.sol#2188-2191) is never used and should be
removed
VotesUpgradeable._subtract(uint208,uint208) (WToken.sol#2290-2292) is never used and
should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.20 (WToken.sol#3) necessitates a version too recent to be trusted. Consider
deploying with 0.8.18.
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter WToken.initialize(string,string,address,address,uint48)._name (WToken.sol#2790) is
not in mixedCase
Parameter WToken.initialize(string,string,address,address,uint48)._symbol (WToken.sol#2791) is
not in mixedCase
Parameter WToken.initialize(string,string,address,address,uint48)._minterAndBurnerAdmin
(WToken.sol#2792) is not in mixedCase
Parameter WToken.initialize(string,string,address,address,uint48)._owner (WToken.sol#2793) is
not in mixedCase
Parameter WToken.initialize(string,string,address,address,uint48)._adminChangeDelay
(WToken.sol#2794) is not in mixedCase
Parameter WToken.grantMinterAndBurner(address)._minterAndBurner (WToken.sol#2805) is

not in mixedCase
Function WToken.CLOCK_MODE() (WToken.sol#2815-2819) is not in mixedCase
Parameter WToken.burn(uint256)._value (WToken.sol#2821) is not in mixedCase
Parameter WToken.mint(address,uint256)._account (WToken.sol#2829) is not in mixedCase
Parameter WToken.mint(address,uint256)._amount (WToken.sol#2829) is not in mixedCase
Parameter WToken.setDelegate(address,address)._account (WToken.sol#2837) is not in
mixedCase
Parameter WToken.setDelegate(address,address)._delegatee (WToken.sol#2837) is not in
mixedCase
Parameter WToken.nonces(address)._owner (WToken.sol#2846) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:WToken.sol analyzed (42 contracts with 93 detectors), 279 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

WToken.sol

Gas costs:
Gas requirement of function WToken.initialize is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 5789:23:

Gas costs:
Gas requirement of function WToken.burn is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 5849:23:

Similar variable names:
WToken.mint(address,uint256) : Variables have very similar names "_account" and "_amount".
Note: Modifiers are currently not considered by this static analysis.
Pos: 5869:8:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 4036:27:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

WToken.sol

Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:3
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 13:457
Avoid to use low level calls.
Pos: 51:689
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 13:735
Avoid making time-based decisions in your business logic
Pos: 48:5566
Variable name must be in mixedCase
Pos: 9:5605
Avoid making time-based decisions in your business logic
Pos: 48:5633
Variable name must be in mixedCase
Pos: 9:5691
Variable name must be in mixedCase
Pos: 9:5710
Avoid making time-based decisions in your business logic
Pos: 27:5742
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:5782
Function name must be in mixedCase
Pos: 5:5838

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

