
Project: dYdX Token
Website: dydx.exchange
Platform: Ethereum
Language: Solidity
Date: February 19th, 2024

https://dydx.exchange

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Business Risk Analysis …..…………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………….12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the dYdX Token
smart contract from dydx.exchange was audited extensively. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on February 19th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The dYdX governance token smart contract defines a sophisticated ERC20 token

contract with built-in governance features, including delegation of voting and

proposition power.

● The `DydxToken` contract ensures secure and restricted transfers, and minting

conditions, and allows the owner to manage an allowlist for token transfers during

restricted periods.

● The contract leverages the `SafeMath` library for safe arithmetic operations and

provides detailed delegation and snapshot mechanisms for tracking governance

power.

Audit scope

Name Code Review and Security Analysis Report for dYdX
Token Smart Contract

Platform Ethereum

Language Solidity

File DydxToken.sol

Smart Contract Code 0x92d6c1e31e14520e676a687f0a93788b716beff5

Audit Date February 19th, 2024

https://etherscan.io/token/0x92d6c1e31e14520e676a687f0a93788b716beff5#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: dYdX

● Symbol: DYDX

● Decimals: 18

● Total Supply:1 billion

YES, This is valid.

Ownership Control:
● Updates addresses to the token transfer

allowlist.

● Updates the transfer restriction.

● Mint new tokens.

● Implements the permit function.

● The current owner can transfer the

ownership.

● The owner can renounce ownership.

YES, This is valid.
We suggest renouncing
ownership once the ownership
functions are not needed. This is
to make the smart contract 100%
decentralized.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 1 medium, 0 low, and 9 very low level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy Yes

Cannot Sell Yes

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contract contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the dYdX Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the dYdX Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a dYdX Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are not well commented on. but the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x92d6c1e31e14520e676a687f0a93788b716beff5#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Solidity assembly,

Compile time
warning, Coding style

Refer Audit
Findings

2 addToTokenTransferAllowlist external Centralization Refer Audit
Findings

3 removeFromTokenTransferAl
lowlist

external Centralization Refer Audit
Findings

4 updateTransfersRestrictedB
efore

external Centralization Refer Audit
Findings

5 mint external Centralization Refer Audit
Findings

6 permit external Passed No Issue
7 nonces external Passed No Issue
8 transfer write Passed No Issue
9 transferFrom write Passed No Issue
10 _mint internal Passed No Issue
11 _requireTransferAllowed read Passed No Issue
12 _beforeTokenTransfer internal Passed No Issue
13 _getDelegationDataByType internal Passed No Issue
14 delegateByTypeBySig write Passed No Issue
15 delegateBySig write Passed No Issue
16 delegateByType external Redundant 'virtual'

keyword
Refer Audit
Findings

17 delegate external Redundant 'virtual'
keyword

Refer Audit
Findings

18 getDelegateeByType external Redundant 'virtual'
keyword

Refer Audit
Findings

19 getPowerCurrent external Redundant 'virtual'
keyword

Refer Audit
Findings

20 getPowerAtBlock external Passed No Issue
21 _delegateByType internal Passed No Issue
22 _moveDelegatesByType internal Passed No Issue
23 _searchByBlockNumber internal Passed No Issue
24 _getDelegationDataByType internal Passed No Issue
25 _writeSnapshot internal Passed No Issue
26 _getDelegatee internal Passed No Issue
27 owner read Passed No Issue
28 onlyOwner modifier Passed No Issue
29 renounceOwnership write Centralization Refer Audit

Findings
30 transferOwnership write Centralization Refer Audit

Findings
31 name read Passed No Issue

32 symbol read Passed No Issue
33 decimals read Passed No Issue
34 totalSupply read Passed No Issue
35 balanceOf read Passed No Issue
36 transfer write Passed No Issue
37 allowance read Passed No Issue
38 approve write Passed No Issue
39 transferFrom write Passed No Issue
40 increaseAllowance write Passed No Issue
41 decreaseAllowance write Passed No Issue
42 _transfer internal Passed No Issue
43 _mint internal Passed No Issue
44 _burn internal Passed No Issue
45 _approve internal Passed No Issue
46 _beforeTokenTransfer internal Passed No Issue
47 _setupDecimals internal Passed No Issue
48 _msgSender internal Passed No Issue
49 _msgData internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Uninitialized state variable:

Uninitialized state variables.

Resolution: Initialize all the variables. If a variable is meant to be initialized to zero,

explicitly set it to zero to improve code readability.

Low

No Low Severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) block timestamp:

Dangerous usage of block.timestamp. block.timestamp can be manipulated by miners.

Resolution: Avoid relying on block.timestamp.

(2) Multiple pragma:

Multiple pragmas are deducted.

Resolution: We suggest using one solidity pragma.

(3) Compile time warning:

Constructor argument, name, and symbol is a shadow declaration of name and symbol,

function name.

Resolution: We suggest changing the constructor argument variable names like

_tokenName and _tokenSymbol.

(4) Solidity assembly:

Using assembly can be useful for optimizing code, but it can also be error-prone. It's

important to carefully test and debug assembly code to ensure that it is correct and does

not contain any errors.

Resolution: It is recommended to use assembly sparingly and only when necessary, as it

can be difficult to read and understand compared to Solidity code.

(5) Use of "call": should be avoided whenever possible:

It can lead to unexpected behavior if the return value is not handled properly.

Resolution: Please use Direct Calls by specifying the called contract's interface.

(6) Coding style:

Explicitly specifying the public for a constructor in this version generates a warning, as the

visibility is ignored.

Resolution: We suggest removing the Explicit specifier 'public' visibility keyword.

(7) Centralization:

In the contract onlyOwner() is an owner authority on the following function:

● renounceOwnership

● transferOwnership

● addToTokenTransferAllowlist

● removeFromTokenTransferAllowlist

● updateTransfersRestrictedBefore

● mint

Resolution: We suggest carefully managing the onlyOwner private key to avoid any

potential risks of being hacked. In general, we strongly recommend centralized privileges

or roles in the protocol to be improved via a decentralized mechanism or

smart-contract-based accounts with enhanced security practices.

(8) Redundant 'virtual' keyword:

In Solidity version 0.7.5 and later, all functions in an interface are considered virtual by

default, and explicitly using the virtual keyword is not necessary.

Resolution: We suggest simply removing the 'virtual' keyword from the function

declarations in your interface.

(9) Visibility can be external over the public:

Any functions which are not called internally should be declared as external. This saves

some gas and is considered a good practice.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

DydxToken.sol
● addToTokenTransferAllowlist: Adds addresses to the token transfer allowlist only

callable by the owner.

● removeFromTokenTransferAllowlist: Removes addresses from the token transfer

allowlist only callable by the owner.

● updateTransfersRestrictedBefore: Updates the transfer restriction only callable by

the owner.

● mint: Mint new tokens are only callable by the owner after the required time period

has elapsed.

● permit: Implements the permit function only callable by the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of Etherscan web links. And we have used all

possible tests based on given objects as files. We observed 1 medium And 9 Informational

issues in the smart contracts. but those are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0x92d6c1e31e14520e676a687f0a93788b716beff5#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - dYdX Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> DydxToken.sol

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

DydxToken.sol

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

DydxToken.sol

Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:8
Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:34
Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:113
Use double quotes for string literals
Pos: 21:140
Use double quotes for string literals
Pos: 22:155
Use double quotes for string literals
Pos: 25:196
Use double quotes for string literals
Pos: 22:213
Use double quotes for string literals
Pos: 22:252
Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:279
Use double quotes for string literals
Pos: 46:332
Use double quotes for string literals
Pos: 54:335
Use double quotes for string literals
Pos: 22:336
Compiler version ^0.7.5 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:343
Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:650
Use double quotes for string literals
Pos: 37:689
Use double quotes for string literals
Pos: 37:710
Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:719
Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:811
Use double quotes for string literals
Pos: 5:833
Use double quotes for string literals
Pos: 5:838
Use double quotes for string literals
Pos: 7:971
Use double quotes for string literals

Pos: 7:1074
Compiler version 0.7.5 does not satisfy the ^0.5.8 semver requirement
Pos: 1:1191
Use double quotes for string literals
Pos: 35:1233
Use double quotes for string literals
Pos: 37:1234
Use double quotes for string literals
Pos: 42:1239
Use double quotes for string literals
Pos: 5:1241
Use double quotes for string literals
Pos: 5:1244
Use double quotes for string literals
Pos: 7:1329
Use double quotes for string literals
Pos: 7:1333
Use double quotes for string literals
Pos: 7:1485
Use double quotes for string literals
Pos: 9:1490
Use double quotes for string literals
Pos: 7:1498
Use double quotes for string literals
Pos: 9:1591
Use double quotes for string literals
Pos: 49:1683
Use double quotes for string literals
Pos: 7:1687
Use double quotes for string literals
Pos: 7:1691
Use double quotes for string literals
Pos: 7:1695
Use double quotes for string literals
Pos: 49:1721
Use double quotes for string literals
Pos: 7:1725
Use double quotes for string literals
Pos: 7:1729
Use double quotes for string literals
Pos: 7:1733

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

