
Project: yearn.finance(YFI)
Website: yearn.fi

 Platform: Base Chain Network
Language: Solidity
Date: June 8th, 2024

https://yearn.fi

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..6

Code Audit History ………………………………………………………………………………..7

Severity Definitions ……………………………………………………………………………....7

Claimed Smart Contract Features …………………………………………………………….. .8

Audit Summary ……………....…………………………………………………………………...9

Technical Quick Stats …..……………………………………………………………………… 10

Business Risk Analysis …..…………………………………………………………………. 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 25

●

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the yearn.finance
smart contract from yearn.fi was audited extensively. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on June 8th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

● Yearn is a decentralized suite of products helping individuals, DAOs, and other

protocols earn yield on their digital assets.

● Yearn is a decentralized finance (DeFi) platform offering various yield-generating

products for individuals, DAOs, and protocols. Users can stake, invest, and earn

yields on their digital assets. Key features include Vaults V2 for token deposits,

veYFI for governance participation, yCRV for optimal CRV yields, yETH for liquid

staking yield, and yPrisma for additional yield opportunities.

Code Details
● This Solidity code defines an ERC20 token that is mintable and burnable via a

bridge contract, specifically designed to work with the Optimism Layer 2 solution.

Here's an overview of the key components and functionalities:

● Core Contract:
○ Semver: Handles semantic versioning with `MAJOR_VERSION`,

`MINOR_VERSION`, and `PATCH_VERSION`.

○ ERC20:
■ Implements the standard ERC20 functionality with additional internal

functions to handle minting, burning, allowances, and token transfers.

■ Functions include `name`, `symbol`, `decimals`, `totalSupply`,

`balanceOf`, `transfer`, `allowance`, `approve`, `transferFrom`,

`increaseAllowance`, `decreaseAllowance`, `_transfer`, `_mint`,

`_burn`, `_approve`, `_spendAllowance`, `_beforeTokenTransfer`, and

`_afterTokenTransfer`.

○ OptimismMintableERC20:
■ Extends `ERC20` and `Semver` to create a mintable and burnable

token for use with the Optimism bridge.

■ The constructor takes parameters for the bridge address, remote

token address, token name, and symbol.

■ The `mint` and `burn` functions can only be called by the bridge

contract.

■ Implements `supportsInterface` for interface detection.

● This structure ensures that the token adheres to the ERC20 standard while adding

the necessary functionalities for integration with the Optimism Layer 2 solution,

specifically for minting and burning tokens via a designated bridge contract.

Audit scope

Name Code Review and Security Analysis Report for
yearn.finance (YFI) Smart Contract

Platform Base Chain Network

Language Solidity

File OptimismMintableERC20.sol

Smart Contract Code 0x9eaf8c1e34f05a589eda6bafdf391cf6ad3cb239

Audit Date June 8th,2024

Audit Result Passed

https://basescan.org/token/0x9eaf8c1e34f05a589eda6bafdf391cf6ad3cb239#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

2 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

2
Total

Findings

0
Critical

0
High

0
Medium

0
Low

2
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Tokenomics:
● Name: yearn.finance

● Symbol: YFI

● Decimals: 18

YES, This is valid.

Ownership Control:
● There are no owner functions, which makes it 100%

decentralized.

YES, This is valid.

Key Features:
● Minting and Burning: The `mint` and `burn` functions

allow the bridge contract to control the supply of tokens

on the Optimism network.

● Access Control: Only the bridge contract can call the

mint and burn functions, ensuring controlled minting

and burning processes.

● Versioning: The `Semver` contract is used to handle

versioning, ensuring that different versions of the

contract can be managed and identified.

● Interface Support: The `supportsInterface` function

ensures compatibility with the IERC165 standard for

interface detection.

YES, This is valid.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.This token contract does not have any ownership control, hence
it is 100% decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 2 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? No

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? No

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in yearn.finance (YFI) is part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the yearn.finance (YFI).

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a yearn.finance (YFI) smart contract code in the form of a basescan web

link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

-

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/token/0x9eaf8c1e34f05a589eda6bafdf391cf6ad3cb239#code

AS-IS overview

OptimismMintableERC20.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyBridge modifier Passed No Issue
3 mint external access only

Bridge
No Issue

4 burn external access only
Bridge

No Issue

5 supportsInterface external Passed No Issue
6 l1Token read Identical value

for 3 functions
Refer Audit

Findings
7 l2Bridge read Identical value

for 3 functions
Refer Audit

Findings
8 remoteToken read Identical value

for 3 functions
Refer Audit

Findings
9 bridge read Identical value

for 3 functions
Refer Audit

Findings
10 name read Passed No Issue
11 symbol read Passed No Issue
12 decimals read Passed No Issue
13 totalSupply read Passed No Issue
14 balanceOf read Passed No Issue
15 transfer write Passed No Issue
16 allowance read Passed No Issue
17 approve write Passed No Issue
18 transferFrom write Passed No Issue
19 increaseAllowance write Passed No Issue
20 decreaseAllowance write Passed No Issue
21 _transfer internal Passed No Issue
22 _mint internal Passed No Issue
23 _burn internal Passed No Issue
24 _approve internal Passed No Issue
25 _spendAllowance internal Passed No Issue
26 _beforeTokenTransfer internal Passed No Issue
27 _afterTokenTransfer internal Passed No Issue
28 version read Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:
[I-01] Visibility can be external over the public:
Description:
Any functions which are not called internally should be declared as external. This saves

some gas and is considered a good practice.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

[I-02] Identical value for 3 functions:

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Description:
The same value has been returned by these 3 functions:

● BRIDGE

● l2Bridge()

● bridge() and remoteToken()

Recommendation: We suggest using only 1 function if the value is the same for both and

the other can be removed.

Centralization

The yearn.finance (YFI) smart contract does not have any ownership control, hence it is
100% decentralized.

Therefore, there is no centralization risk.

You are here

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 2 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/token/0x9eaf8c1e34f05a589eda6bafdf391cf6ad3cb239#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - yearn.finance (YFI)

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

OptimismMintableERC20.sol

INFO:Detectors:
OptimismMintableERC20.constructor(address,address,string,string)._name
(OptimismMintableERC20.sol#672) shadows:
 - ERC20._name (OptimismMintableERC20.sol#274) (state variable)
OptimismMintableERC20.constructor(address,address,string,string)._symbol
(OptimismMintableERC20.sol#673) shadows:
 - ERC20._symbol (OptimismMintableERC20.sol#275) (state variable)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
OptimismMintableERC20.constructor(address,address,string,string)._remoteToken
(OptimismMintableERC20.sol#671) lacks a zero-check on :
 - REMOTE_TOKEN = _remoteToken (OptimismMintableERC20.sol#675)
OptimismMintableERC20.constructor(address,address,string,string)._bridge
(OptimismMintableERC20.sol#670) lacks a zero-check on :
 - BRIDGE = _bridge (OptimismMintableERC20.sol#676)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Context._msgData() (OptimismMintableERC20.sol#177-179) is never used and should be
removed
Strings.toHexString(address) (OptimismMintableERC20.sol#166-168) is never used and should
be removed
Strings.toHexString(uint256) (OptimismMintableERC20.sol#135-146) is never used and should
be removed
Strings.toHexString(uint256,uint256) (OptimismMintableERC20.sol#151-161) is never used and
should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.0 (OptimismMintableERC20.sol#4) allows old versions
solc-0.8.25 is not recommended for deployment

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Variable Semver.MAJOR_VERSION (OptimismMintableERC20.sol#221) is not in mixedCase
Variable Semver.MINOR_VERSION (OptimismMintableERC20.sol#226) is not in mixedCase
Variable Semver.PATCH_VERSION (OptimismMintableERC20.sol#231) is not in mixedCase
Parameter OptimismMintableERC20.mint(address,uint256)._to
(OptimismMintableERC20.sol#685) is not in mixedCase
Parameter OptimismMintableERC20.mint(address,uint256)._amount
(OptimismMintableERC20.sol#685) is not in mixedCase
Parameter OptimismMintableERC20.burn(address,uint256)._from
(OptimismMintableERC20.sol#701) is not in mixedCase
Parameter OptimismMintableERC20.burn(address,uint256)._amount
(OptimismMintableERC20.sol#701) is not in mixedCase
Parameter OptimismMintableERC20.supportsInterface(bytes4)._interfaceId
(OptimismMintableERC20.sol#718) is not in mixedCase
Variable OptimismMintableERC20.REMOTE_TOKEN (OptimismMintableERC20.sol#630) is not in
mixedCase
Variable OptimismMintableERC20.BRIDGE (OptimismMintableERC20.sol#635) is not in
mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
Variable OptimismMintableERC20.REMOTE_TOKEN (OptimismMintableERC20.sol#630) is too
similar to OptimismMintableERC20.constructor(address,address,string,string)._remoteToken
(OptimismMintableERC20.sol#671)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar
INFO:Slither:OptimismMintableERC20.sol analyzed (10 contracts with 93 detectors), 21 result(s)
found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

OptimismMintableERC20.sol

Gas costs:
Gas requirement of function OptimismMintableERC20.mint is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 163:4:

Gas costs:
Gas requirement of function OptimismMintableERC20.burn is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 179:4:

Constant/View/Pure functions:
OptimismMintableERC20.supportsInterface(bytes4) : Is constant but potentially should not be.
Note: Modifiers are currently not considered by this static analysis.
Pos: 196:4:

Similar variable names:
Semver.version() : Variables have very similar names "MAJOR_VERSION" and
"MINOR_VERSION". Note: Modifiers are currently not considered by this static analysis.
Pos: 88:37:

No return:
IOptimismMintableERC20.remoteToken(): Defines a return type but never explicitly returns a
value.
Pos: 19:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 135:8:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

OptimismMintableERC20.sol

Compiler version >0.8.15 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Variable name must be in mixedCase
Pos: 5:49
Variable name must be in mixedCase
Pos: 5:54
Variable name must be in mixedCase
Pos: 5:59
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:66
Variable name must be in mixedCase
Pos: 5:107
Variable name must be in mixedCase
Pos: 5:112
Error message for require is too long
Pos: 9:134
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:146

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

