
Project: Cornucopias
Website: cornucopias.io
Platform: Base Chain Network
Language: Solidity
Date: June 14th, 2024

https://www.cornucopias.io/

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 24

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Cornucopias
smart contract from cornucopias.io was audited extensively. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on June 14th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

● Cornucopias is an open-world MMO set in a sky-bound world, developed with

Unreal Engine 5 for high-quality graphics.

● The game includes activities like crafting, commerce, combat, and racing. It

emphasizes digital ownership, allowing players to acquire vehicles, land plots, and

customizable domes.

● The project integrates blockchain technology and has a strong community presence

on platforms like Discord and Twitter. Additionally, Cornucopias engages in

philanthropic activities through its COPI Cares initiative.

Code Details
● The `LSRFactory` contract provided is a factory for creating and managing Liquid

Stability Reserve (LSR) instances using the TransparentUpgradeableProxy pattern

from OpenZeppelin.

● This factory contract allows for the creation and management of LSR instances,

providing mechanisms to initialize them using proxy contracts, add them to a set for

tracking, remove them, and interact with their functions generically.

● The use of the proxy pattern ensures that the LSR implementations can be

upgraded without changing their addresses, thus maintaining the integrity of their

references throughout their lifecycle.

● The ownership pattern restricts critical functions to the contract owner, ensuring

controlled management.

Audit scope

Name Code Review and Security Analysis Report for
Cornucopias Smart Contract

Platform Base Chain Network

Language Solidity

File LSRFactory.sol

Smart Contract Code 0xc132624055a3e6e1ef4457053c528df179b18285

Audit Date June 14th,2024

Audit Result Passed

https://basescan.org/address/0xc132624055a3e6e1ef4457053c528df179b18285#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

2 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

2
Total

Findings

0
Critical

0
High

0
Medium

0
Low

2
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Owner Control:
● Create a new LSR.

● Add/Remove LSR.

● Execute transaction.

● Pending Owner address can be set by current owner.

● Accepts the admin rights, but only for pending Owners.

Admin Control:
● Returns the current implementation.

● Changes the admin of the proxy.

● Upgrade the implementation of the proxy.

● Upgrade the implementation of the proxy, and then call

a function from the new implementation as specified by

`data`, which should be an encoded function call. This

is useful to initialize new storage variables in the

proxied contract.

YES, This is valid.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 2 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? Yes

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Cornucopias are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Cornucopias.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Cornucopias smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

-

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/address/0xc132624055a3e6e1ef4457053c528df179b18285#code

AS-IS overview

LSRFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 initialize write initializer No Issue
3 _createLSR external access only owner No Issue
4 _addLSR write Public and External

Functions with
Leading

Underscores

Refer Audit
Findings

5 _removeLSR write Gas Optimization,
Public and External

Functions with
Leading

Underscore

Refer Audit
Findings

6 _execute internal Passed No Issue
7 _executeTransaction external Public and External

Functions with
Leading

Underscores

Refer Audit
Findings

8 _getAllLSRs internal Passed No Issue
9 _getLSRInfo internal Passed No Issue
10 getAllLSRs external Passed No Issue
11 initializer modifier Passed No Issue
12 onlyOwner modifier Passed No Issue
13 __Ownable_init internal Passed No Issue
14 _setPendingOwner external access only owner No Issue
15 _acceptOwner external Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:
[I-01] Gas Optimization:
Description:
These 'public' functions like _removeLSR() that are never called by the contract could be

declared external functions.

Recommendation: We suggest declare these function external for better Gas

optimization.

[I-02] Public and External Functions with Leading Underscores:

function _executeTransaction(

address _target,

string memory _signature,

bytes memory _data

) external onlyOwner {

_execute(_target, _signature, _data);

}

function _addLSR(address _lsr) public onlyOwner {

require(ILSR(_lsr).mpr() != address(0), "_addLSR: is LSR

contract");

require(lsrs_.add(_lsr), "it has been sold");

emit AddLSR(_lsr);

}

function _removeLSR(address _lsr) public onlyOwner {

require(lsrs_.remove(_lsr), "_removeLSR: _lsr does not

exist");

emit RemoveLSR(_lsr);

}

Description:
The following functions are marked as public or external, making them accessible from

outside the contract. However, their names start with an underscore (_), which

conventionally suggests they are intended for internal use:_createLSR(),_addLSR(),

_removeLSR(),_executeTransaction()

Recommendation: we suggest the Solidity naming convention guidelines, the codebase

increases the readability, and maintainability, and makes it easier to work with Find more

information on the Solidity documentation like:-

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Owner functions:

LSRFactory.sol
● _createLSR: Create a new LSR by the owner.

● _addLSR: Add an LSR by the owner.

● _removeLSR: Remove an LSR by the owner.

● _executeTransaction: Execute transaction by the owner.

TransparentUpgradeableProxy.sol
● admin: Only the admin can call this function.

● implementation: Returns the current implementation

● changeAdmin: Changes the admin of the proxy.

● upgradeTo: Upgrade the implementation of the proxy.

● upgradeToAndCall: Upgrade the implementation of the proxy, and then call a

function from the new implementation as specified by `data`, which should be an

encoded function call. This is useful to initialize new storage variables in the proxied

contract.

Ownable.sol
● _setPendingOwner: The Pending Owner address can be set by the current owner.

● _acceptOwner: Accepts the admin rights, but only for pending Owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 2 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/address/0xc132624055a3e6e1ef4457053c528df179b18285#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Cornucopias

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

LSRFactory.sol

INFO:Detectors:
Modifier TransparentUpgradeableProxy.ifAdmin() (LSRFactory.sol#799-805) does not always
execute _; or revertReference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-modifier
INFO:Detectors:
Reentrancy in LSRFactory._createLSR(address,address,bytes) (LSRFactory.sol#941-951):

External calls:
- _lsr = address(new TransparentUpgradeableProxy(_implementation,_proxyAdmin,_data))

(LSRFactory.sol#946-948)
Event emitted after the call(s):
- AddLSR(_lsr) (LSRFactory.sol#960)

- _addLSR(_lsr) (LSRFactory.sol#950)
- CreateLSR(_lsr,_implementation,_proxyAdmin,_data) (LSRFactory.sol#949)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Pragma version>=0.6.2<0.8.0 (LSRFactory.sol#3) is too complex
solc-0.7.6 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Function ILSR._setTaxIn(uint256) (LSRFactory.sol#473) is not in mixedCase
Function ILSR._setTaxOut(uint256) (LSRFactory.sol#475) is not in mixedCase
Function ILSR._open() (LSRFactory.sol#493) is not in mixedCase
Function ILSR._close() (LSRFactory.sol#495) is not in mixedCase
Function ILSR._switchStrategy(address) (LSRFactory.sol#497) is not in mixedCase
Function ILSR._withdrawReserves(address) (LSRFactory.sol#499) is not in mixedCase
Function ILSR._claimRewards(address) (LSRFactory.sol#501) is not in mixedCase
Function LSRFactory._createLSR(address,address,bytes) (LSRFactory.sol#941-951) is not in
mixedCase
Parameter LSRFactory._createLSR(address,address,bytes)._implementation

(LSRFactory.sol#942) is not in mixedCase
Parameter LSRFactory._createLSR(address,address,bytes)._proxyAdmin (LSRFactory.sol#943) is
not in mixedCase
Parameter LSRFactory._createLSR(address,address,bytes)._data (LSRFactory.sol#944) is not in
mixedCase
Function LSRFactory._addLSR(address) (LSRFactory.sol#957-961) is not in mixedCase
Parameter LSRFactory._addLSR(address)._lsr (LSRFactory.sol#957) is not in mixedCase
Function LSRFactory._removeLSR(address) (LSRFactory.sol#967-970) is not in mixedCase
Parameter LSRFactory._removeLSR(address)._lsr (LSRFactory.sol#967) is not in mixedCase
Function LSRFactory._executeTransaction(address,string,bytes) (LSRFactory.sol#996-1002) is
not in mixedCase
Parameter LSRFactory._executeTransaction(address,string,bytes)._target (LSRFactory.sol#997) is
not in mixedCase
Parameter LSRFactory._executeTransaction(address,string,bytes)._signature
(LSRFactory.sol#998) is not in mixedCase
Parameter LSRFactory._executeTransaction(address,string,bytes)._data (LSRFactory.sol#999) is
not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:LSRFactory.sol analyzed (9 contracts with 93 detectors), 61 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

LSRFactory.sol

Inline assembly:
The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 885:8:

Low level calls:
Use of "delegatecall": should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.
Pos: 164:50:

Gas costs:
Gas requirement of function LSRFactory.getAllLSRs is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1038:4:

Similar variable names:
LSRFactory._getAllLSRs() : Variables have very similar names "lsrs_" and "_lsrs". Note: Modifiers
are currently not considered by this static analysis.
Pos: 1009:49:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 985:8:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 257:12:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

LSRFactory.sol

Compiler version >=0.6.2 <0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:2
Error message for require is too long
Pos: 9:54
Error message for require is too long
Pos: 9:111
Error message for require is too long
Pos: 9:136
Error message for require is too long
Pos: 9:160
Error message for require is too long
Pos: 9:289
Error message for require is too long
Pos: 9:536
Error message for require is too long
Pos: 9:569
Function name must be in mixedCase
Pos: 5:576
Error message for require is too long
Pos: 9:590
Error message for require is too long
Pos: 9:608
Code contains empty blocks
Pos: 49:696
Error message for require is too long
Pos: 9:762
Error message for require is too long
Pos: 9:840
Error message for require is too long
Pos: 9:893
Error message for require is too long
Pos: 9:984

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

