
Project: Extra Finance (EXTRA)
Website: app.extrafi.io/lend
Platform: Base Chain Network
Language: Solidity
Date: June 24th, 2024

https://app.extrafi.io/lend

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..6

Code Audit History ………………………………………………………………………………..7

Severity Definitions ……………………………………………………………………………....7

Claimed Smart Contract Features …………………………………………………………….. .8

Audit Summary ……………....………………………………………………………………….10

Technical Quick Stats …..……………………………………………………………………… 11

Business Risk Analysis …..…………………………………………………………………. 12

Code Quality ……………………………………………………………………………………. 13

Documentation ………………………………………………………………………………….. 13

Use of Dependencies …………………………………………………………………………… 13

AS-IS overview ………………………………………………………………………………….. 14

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 27

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Extra Finance
smart contract from app.extrafi.io/lend was audited extensively. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on June 24th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

● Extra Finance is a leveraged yield strategy & lending protocol built on

Optimism/Base.

● Extra Finance offers leveraged yield farming, allowing users to maximize earnings

by leveraging stable pools like $ETH/$USDC for attractive yield rates and

depositing assets in the Lending Pool for steady passive income. However, careful

risk assessment and active management are crucial to mitigate potential drawbacks

and ensure a successful farming experience.

Code Details
● The provided code implements a cross-chain token called `EXTRAoft` that

leverages the LayerZero protocol to facilitate sending tokens between different

blockchain networks. This functionality is achieved through several abstract and

base contracts that define essential methods and events for handling cross-chain

messaging and token operations. Here's a detailed breakdown of the key

components and their roles:

● Contract Components:
○ EXTRAoft Contract:

■ Inherits `OFT`.

■ Initializes the token with the name "Extra Finance" and symbol

"EXTRA".

■ Configures the contract to use a specified LayerZero endpoint for

crosschain operations.

○ OFT Contract:

■ Inherits `OFTCore`, `ERC20`, and `IOFT`.

■ Implements the ERC20 token standard alongside the crosschain

functionalities provided by `OFTCore`.

■ Defines `_debitFrom` and `_creditTo` methods to handle burning and

minting tokens during crosschain transfers.

■ Provides additional methods to support ERC165 interface checks and

tokenspecific details like total supply.

○ OFTCore Contract:

■ Inherits `NonblockingLzApp`, `ERC165`, and `IOFTCore`.

■ Provides core functionalities for an Omnichain Fungible Token (OFT),

including support for estimating send fees and sending tokens across

chains.

■ Implements the `_send` and `_sendAck` methods to handle token

transfers and acknowledgments.

■ Includes abstract methods `_debitFrom` and `_creditTo` for debiting

and crediting tokens, to be defined in derived contracts.

○ NonblockingLzApp Contract:

■ Inherits `LzApp`.

■ Adds functionality for handling message failures and retries.

■ Stores failed messages and emits events when messages fail or

succeed on retry.

■ Implements `_blockingLzReceive` to safely call the nonblocking

receive method and store failed messages if necessary.

○ LzApp Contract:

■ Inherits `Ownable`, `ILayerZeroReceiver`, and

`ILayerZeroUserApplicationConfig`.

■ Manages the configuration and communication with the LayerZero

endpoint.

■ Contains mappings to store trusted remote addresses, minimum

destination gas requirements, and payload size limits.

■ Defines methods to receive messages (`lzReceive`), send messages

(`_lzSend`), and configure various settings such as trusted remotes

and gas limits.

● The `EXTRAoft` contract extends a sophisticated framework for creating a

cross-chain token that can be sent and received across different blockchain

networks using the LayerZero protocol. The modular design allows for easy

customization and extension while providing robust mechanisms for handling

cross-chain messaging and token management.

Audit scope

Name Code Review and Security Analysis Report for Extra
Finance Smart Contract

Platform Base Chain Network

Language Solidity

File EXTRAoft.sol

Smart Contract Code 0x2dad3a13ef0c6366220f989157009e501e7938f8

Audit Date June 24th,2024

Audit Result Passed

https://basescan.org/token/0x2dad3a13ef0c6366220f989157009e501e7938f8#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

1 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

2 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

3
Total

Findings

0
Critical

0
High

0
Medium

1
Low

2
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Tokenomics:
● Name: Extra Finance

● Symbol: EXTRA

● Decimals: 18

YES, This is valid.

Owner Specifications:
● Allows the current owner to transfer control of the

contract to a new owner.

● The current owner Leaves the contract without

the owner.

● Set configurations.

● Set the send/receive version.

● Set the trusted path for cross-chain

communication.

● Set a trusted remote address

● Set precrime.

● Set min dst gas.

● Set the payload size limit.

YES, This is valid.
We advise renouncing
ownership once the
ownership functions are
not needed. This is to make
the smart contract 100%
decentralized.

Key Functionalities:
● CrossChain Messaging: The `LzApp` and

`NonblockingLzApp` contracts manage

crosschain message sending and receiving,

ensuring messages are only accepted from

trusted sources and handling potential message

failures with retries.

● Token Transfers: The `OFTCore` and `OFT`

contracts implement methods to transfer tokens

between chains by encoding the transfer details

in the payload and ensuring the tokens are

correctly debited from the sender and credited to

YES, This is valid.

the receiver on the destination chain.

● Configuration and Security: The contracts include

various configuration methods to set up trusted

remotes, gas limits, payload size limits, and

precrime addresses. These settings help ensure

secure and efficient crosschain operations.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 1 low, and 2 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? No

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Extra Finance are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Extra Finance.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Extra Finance smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/token/0x2dad3a13ef0c6366220f989157009e501e7938f8#code

AS-IS overview

EXTRAoft.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Empty Blocks

in Code
Refer Audit
Findings

2 supportsInterface read Passed No Issue
3 token read Passed No Issue
4 circulatingSupply read Passed No Issue
5 _debitFrom internal Passed No Issue
6 _creditTo internal Passed No Issue
7 supportsInterface read Passed No Issue
8 estimateSendFee read Passed No Issue
9 sendFrom write Passed No Issue
10 setUseCustomAdapterParams write access only

Owner
No Issue

11 _nonblockingLzReceive internal Passed No Issue
12 _send internal Passed No Issue
13 _sendAck internal Passed No Issue
14 _checkAdapterParams internal Passed No Issue
15 _debitFrom internal Passed No Issue
16 _creditTo internal Passed No Issue
17 _blockingLzReceive internal Passed No Issue
18 _storeFailedMessage internal Passed No Issue
19 nonblockingLzReceive write Passed No Issue
20 _nonblockingLzReceive internal Passed No Issue
21 retryMessage write Passed No Issue
22 lzReceive write Passed No Issue
23 _blockingLzReceive internal Unused

function
Refer Audit
Findings

24 _lzSend internal Passed No Issue
25 _checkGasLimit internal Passed No Issue
26 _getGasLimit internal Passed No Issue
27 _checkPayloadSize internal Passed No Issue
28 getConfig external Passed No Issue
29 setConfig external Passed No Issue
30 setSendVersion external access only

Owner
No Issue

31 setReceiveVersion external access only
Owner

No Issue

32 forceResumeReceive external access only
Owner

No Issue

33 setTrustedRemote external access only
Owner

No Issue

34 setTrustedRemoteAddress external access only
Owner

No Issue

35 getTrustedRemoteAddress external Passed No Issue
36 setPrecrime external access only

Owner
No Issue

37 setMinDstGas external access only
Owner

No Issue

38 setPayloadSizeLimit external Critical
operation

lacks event log

Refer Audit
Findings

39 isTrustedRemote external Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

[L-01] Critical operation lacks event log:
Description:
IMissing event log for setPayloadSizeLimit() in LzApp contract.

Recommendation: We suggest writing an event log for the listed event.

Very Low / Informational / Best practices:

[I-01] Unused function:

// overriding the virtual function in LzReceiver

function _blockingLzReceive(uint16 _srcChainId, bytes memory

_srcAddress, uint64 _nonce, bytes memory _payload) internal virtual

override {

(bool success, bytes memory reason) =

address(this).excessivelySafeCall(gasleft(), 150,

abi.encodeWithSelector(this.nonblockingLzReceive.selector,

_srcChainId, _srcAddress, _nonce, _payload));

// try-catch all errors/exceptions

if (!success) {

_storeFailedMessage(_srcChainId, _srcAddress, _nonce,

_payload, reason);

}

}

Description:
The _blockingLzReceive() is an internal function defined in the NonblockingLzApp contract

but never used in code.

Recommendation: We suggest removing unused functions.

[I-02] Empty Blocks in Code:

constructor(address _lzEndpoint) NonblockingLzApp(_lzEndpoint) {}

Description:
During the code review, it was identified that the constructor in the smart contract contains

an empty block. Empty blocks serve no functional purpose and can lead to confusion for

developers reviewing the code. Code readability and maintainability are essential for smart

contracts, and empty blocks should be avoided.

Recommendation: We recommend removing the empty block to improve code clarity

and maintainability.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Admin functions:

LzApp.sol
● setConfig: The owner can set configurations.

● setSendVersion: The owner can set the send version.

● setReceiveVersion: The owner can set the receive version.

● forceResumeReceive: The owner can resume receiving the address.

● setTrustedRemote: Set the trusted path for the cross-chain communication by the

owner.

● setTrustedRemoteAddress: The owner can set a trusted remote address.

● setPrecrime: The owner can set precrime.

● setMinDstGas: The owner can set min dst gas.

● setPayloadSizeLimit: The owner can set the payload size limit.

Ownable.sol
● transferOwnership: Allows the current owner to transfer control of the contract to a

newOwner.

● renounceOwnership: The current owner Leaves the contract without the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. We have used all

possible tests based on given objects as files. We observed 1 low and 2 Informational

issues in the smart contracts. but those are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/token/0x2dad3a13ef0c6366220f989157009e501e7938f8#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Extra Finance

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

EXTRAoft.sol

INFO:Detectors:
OFT.constructor(string,string,address)._name (EXTRAoft.sol#1586) shadows:

- ERC20._name (EXTRAoft.sol#837) (state variable)
OFT.constructor(string,string,address)._symbol (EXTRAoft.sol#1586) shadows:

- ERC20._symbol (EXTRAoft.sol#838) (state variable)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
LzApp.setPrecrime(address)._precrime (EXTRAoft.sol#1430) lacks a zero-check on :

- precrime = _precrime (EXTRAoft.sol#1431)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in OFTCore._send(address,uint16,bytes,uint256,address,address,bytes)
(EXTRAoft.sol#1550-1559):

External calls:
-

_lzSend(_dstChainId,lzPayload,_refundAddress,_zroPaymentAddress,_adapterParams,msg.value
) (EXTRAoft.sol#1556)

- lzEndpoint.send{value:
_nativeFee}(_dstChainId,trustedRemote,_payload,_refundAddress,_zroPaymentAddress,_adapter
Params) (EXTRAoft.sol#1365)

Event emitted after the call(s):
- SendToChain(_dstChainId,_from,_toAddress,amount) (EXTRAoft.sol#1558)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
LzApp._getGasLimit(bytes) (EXTRAoft.sol#1375-1380) uses assembly

- INLINE ASM (EXTRAoft.sol#1377-1379)
OFTCore._nonblockingLzReceive(uint16,bytes,uint64,bytes) (EXTRAoft.sol#1537-1548) uses

assembly
- INLINE ASM (EXTRAoft.sol#1539-1541)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
ExcessivelySafeCall.excessivelySafeStaticCall(address,uint256,uint16,bytes)
(EXTRAoft.sol#669-703) is never used and should be removed
ExcessivelySafeCall.swapSelector(bytes4,bytes) (EXTRAoft.sol#714-729) is never used and
should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.0 (EXTRAoft.sol#4) allows old versions
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter OFTCore.estimateSendFee(uint16,bytes,uint256,bool,bytes)._dstChainId
(EXTRAoft.sol#1522) is not in mixedCase
Parameter OFTCore.estimateSendFee(uint16,bytes,uint256,bool,bytes)._toAddress
(EXTRAoft.sol#1522) is not in mixedCase
Parameter OFTCore.estimateSendFee(uint16,bytes,uint256,bool,bytes)._amount
(EXTRAoft.sol#1522) is not in mixedCase
Parameter OFTCore.estimateSendFee(uint16,bytes,uint256,bool,bytes)._useZro
(EXTRAoft.sol#1522) is not in
mixedCaseOFTCore.sendFrom(address,uint16,bytes,uint256,address,address,bytes)._refundAddr
ess (EXTRAoft.sol#1528) is not in mixedCase
Parameter
OFTCore.sendFrom(address,uint16,bytes,uint256,address,address,bytes)._zroPaymentAddress
(EXTRAoft.sol#1528) is not in mixedCase
Parameter
OFTCore.sendFrom(address,uint16,bytes,uint256,address,address,bytes)._adapterParams
(EXTRAoft.sol#1528) is not in mixedCase
Parameter OFTCore.setUseCustomAdapterParams(bool)._useCustomAdapterParams
(EXTRAoft.sol#1532) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
ExcessivelySafeCall.slitherConstructorConstantVariables() (EXTRAoft.sol#598-730) uses literals
with too many digits:

- LOW_28_MASK = 0x00000000ff
(EXTRAoft.sol#599-600)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Slither:EXTRAoft.sol analyzed (19 contracts with 93 detectors), 135 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

EXTRAoft.sol

Inline assembly:
The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 1539:8:

Gas costs:
Gas requirement of function EXTRAoft.setPrecrime is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 1430:4:

This on local calls:
Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes more gas than normal local calls.
Pos: 1471:119:

Constant/View/Pure functions:
ExcessivelySafeCall.swapSelector(bytes4,bytes) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.
Pos: 714:4:

Constant/View/Pure functions:
LzApp._getGasLimit(bytes) : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.
Pos: 1375:4:

No return:
OFTCore._debitFrom(address,uint16,bytes,uint256): Defines a return type but never explicitly
returns a value.
Pos: 1579:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 1575:12:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

EXTRAoft.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:3
Check result of "send" call
Pos: 9:1364
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:1376
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1515
Code contains empty blocks
Pos: 68:1515
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:1538
Error message for require is too long
Pos: 13:1574
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1585
Code contains empty blocks
Pos: 125:1585
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1614
Code contains empty blocks
Pos: 57:1616

Software analysis result:
This software reported many false positive results and some were informational issues.

So, those issues can be safely ignored.

