
Project: Heroes of Mavia
Website: mavia.com
Platform: Base Chain Network
Language: Solidity
Date: May 29th, 2024

https://www.mavia.com/

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 25

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Heroes of
Maviasmart contract from mavia.com was audited extensively. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on May 29th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

Heroes of Mavia is a mobile strategy game where players build and defend bases,

command armies, and earn in-game resources like Ruby, Gold, and Oil. The game

emphasizes strategic base-building, resource management, and combat with a variety of

infantry, vehicle, and air units. Players can also participate in governance through the

Mavia DAO and trade items in the Ruby Legendary Marketplace. The game is available on

iOS and Android and features high-quality 3D art developed by Skrice Studios.

Code Details
● The provided Solidity contract, `MaviaOFT`, is an implementation of an Omnichain

Fungible Token (OFT) using LayerZero's technology for cross-chain interoperability.

Here's a detailed explanation of its components and functionality:

● Key Components:

○ Imports:

■ OFT from LayerZero Labs: This import brings in the functionality for

Omnichain Fungible Tokens, enabling the token to operate across

multiple blockchains.

■ The LayerZero endpoint enables seamless cross-chain

communication, allowing tokens to be transferred and utilized on

various supported chains.

● This contract is designed to create a token that can be easily used and transferred

across different blockchain networks, providing enhanced functionality and flexibility

for token holders and developers.

Audit scope

Name Code Review and Security Analysis Report for
Heroes of Mavia Smart Contract

Platform Base Chain Network

Language Solidity

File MaviaOFT.sol

Smart Contract Code 0x24fcFC492C1393274B6bcd568ac9e225BEc93584

Audit Date May 29th,2024

Audit Result Passed

https://basescan.org/token/0x24fcFC492C1393274B6bcd568ac9e225BEc93584#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

0 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

0
Total

Findings

0
Critical

0
High

0
Medium

0
Low

0
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Tokenomics:
● Name: Heroes of Mavia

● Symbol: MAVIA

● Decimals: 18

YES, This is valid.

Advantages:
● Cross-Chain Interoperability: By leveraging LayerZero's

OFT, `MaviaOFT` can interact with multiple

blockchains, facilitating a more versatile token use

case.

● Ownership Control: Using OpenZeppelin's `Ownable`,

the contract ensures that sensitive operations can only

be performed by the owner, enhancing security.

YES, This is valid.

Owner Specifications:
● Sets the message inspector address for the OFT.

● Sets the preCrime contract address.

● Sets the enforced options for specific endpoint and

message type combinations.

● Sets the peer address (OApp instance) for a

corresponding endpoint.

● Sets the delegate address for the OApp.

● The current owner can transfer the ownership.

● The owner can renounce ownership.

YES, This is valid.
We advise
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Well Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 0 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? No

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Heroes of Mavia are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Heroes of Mavia.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Heroes of Mavia smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/token/0x24fcFC492C1393274B6bcd568ac9e225BEc93584#code

AS-IS overview

MaviaOFT.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 oftVersion external Passed No Issue
3 token external Passed No Issue
4 approvalRequired external Passed No Issue
5 _debit internal Passed No Issue
6 _credit internal Passed No Issue
7 sharedDecimals write Passed No Issue
8 setMsgInspector write access only

Owner
No Issue

9 quoteOFT external Passed No Issue
10 quoteSend external Passed No Issue
11 send external Passed No Issue
12 _buildMsgAndOptions internal Passed No Issue
13 _lzReceive internal Passed No Issue
14 _lzReceiveSimulate internal Passed No Issue
15 isPeer internal Passed No Issue
16 _removeDust internal Passed No Issue
17 _toLD internal Passed No Issue
18 _toSD internal Passed No Issue
19 _debitView internal Passed No Issue
20 _debit internal Passed No Issue
21 _credit internal Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:
No Very-Low-severity vulnerabilities were found.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Owner functions:

OFTCore.sol
● setMsgInspector: Sets the message inspector address for the OFT.

OAppPreCrimeSimulator.sol
● setPreCrime: Sets the preCrime contract address.

OAppOptionsType3.sol
● setEnforcedOptions: Sets the enforced options for specific endpoint and message

type combinations,

OAppCore.sol
● setPeer: Sets the peer address (OApp instance) for a corresponding endpoint.

● setDelegate: Sets the delegate address for the OApp.

Ownable.sol
● transferOwnership: Allows the current owner to transfer control of the contract to a

newOwner.

● renounceOwnership: Leaves the contract without the owner. It will not be possible

to call `onlyOwner` functions anymore. Can only be called by the current owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files We observed no issue in the smart

contracts. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Well Secured”.

https://basescan.org/token/0x24fcFC492C1393274B6bcd568ac9e225BEc93584#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Heroes of Mavia

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

MaviaOFT.sol

INFO:Detectors:
OFT.constructor(string,string,address,address)._name (MaviaOFT.sol#1480) shadows:

- ERC20._name (MaviaOFT.sol#859) (state variable)
OFT.constructor(string,string,address,address)._symbol (MaviaOFT.sol#1481) shadows:

- ERC20._symbol (MaviaOFT.sol#860) (state variable)
MaviaOFT.constructor(string,string,address,address)._name (MaviaOFT.sol#1522) shadows:

- ERC20._name (MaviaOFT.sol#859) (state variable)
MaviaOFT.constructor(string,string,address,address)._symbol (MaviaOFT.sol#1523) shadows:

- ERC20._symbol (MaviaOFT.sol#860) (state variable)
MaviaOFT.constructor(string,string,address,address)._owner (MaviaOFT.sol#1525) shadows:

- Ownable._owner (MaviaOFT.sol#818) (state variable)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
OFTCore.setMsgInspector(address)._msgInspector (MaviaOFT.sol#1329) lacks a zero-check on :

- msgInspector = _msgInspector (MaviaOFT.sol#1330)
OAppPreCrimeSimulator.setPreCrime(address)._preCrime (MaviaOFT.sol#1244) lacks a
zero-check on :

- preCrime = _preCrime (MaviaOFT.sol#1245)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
OAppPreCrimeSimulator.lzReceiveAndRevert(InboundPacket[]) (MaviaOFT.sol#1249-1265) has
external calls inside a loop: this.lzReceiveSimulate{value:
packet.value}(packet.origin,packet.guid,packet.message,packet.executor,packet.extraData)
(MaviaOFT.sol#1255-1261)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
INFO:Detectors:
Reentrancy in OFTCore._lzReceive(Origin,bytes32,bytes,address,bytes)
(MaviaOFT.sol#1402-1424):

External calls:
- endpoint.sendCompose(toAddress,_guid,0,composeMsg) (MaviaOFT.sol#1420)

Event emitted after the call(s):
- OFTReceived(_guid,_origin.srcEid,toAddress,amountReceivedLD) (MaviaOFT.sol#1423)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabiliti
INFO:Detectors:
Pragma version^0.8.0 (MaviaOFT.sol#3) allows old versions
solc-0.8.0 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter OFTCore.send(SendParam,MessagingFee,address)._refundAddress
(MaviaOFT.sol#1370) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
MaviaOFT (MaviaOFT.sol#1520-1531) does not implement functions:

- IOAppCore.peers(uint32) (MaviaOFT.sol#616)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unimplemented-functions
INFO:Detectors:
OFTComposeMsgCodec.NONCE_OFFSET (MaviaOFT.sol#262) is never used in
OFTComposeMsgCodec (MaviaOFT.sol#261-303)
OFTComposeMsgCodec.SRC_EID_OFFSET (MaviaOFT.sol#263) is never used in
OFTComposeMsgCodec (MaviaOFT.sol#261-303)
OFTComposeMsgCodec.AMOUNT_LD_OFFSET (MaviaOFT.sol#264) is never used in
OFTComposeMsgCodec (MaviaOFT.sol#261-303)
OFTComposeMsgCodec.COMPOSE_FROM_OFFSET (MaviaOFT.sol#265) is never used in
OFTComposeMsgCodec (MaviaOFT.sol#261-303)
OFTMsgCodec.SEND_TO_OFFSET (MaviaOFT.sol#306) is never used in OFTMsgCodec
(MaviaOFT.sol#305-343)
OAppOptionsType3.OPTION_TYPE_3 (MaviaOFT.sol#1118) is never used in MaviaOFT
(MaviaOFT.sol#1520-1531)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variable
INFO:Slither:MaviaOFT.sol analyzed (37 contracts with 93 detectors), 132 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

MaviaOFT.sol

Inline assembly:
The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 124:12:

Low level calls:
Use of "delegatecall": should be avoided whenever possible. External code, that is called can
change the state of the calling contract and send ether from the caller's balance. If this is wanted
behaviour, use the Solidity library feature if possible.
Pos: 85:50:

This on local calls:
Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes more gas than normal local calls.
Pos: 1255:12:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 798:8:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 1250:8:

Similar variable names:
OFTCore._toSD(uint256) : Variables have very similar names "_amountLD" and "amountSD".

Note: Modifiers are currently not considered by this static analysis.
Pos: 1449:22:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 989:8:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

MaviaOFT.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:2
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:12
Error message for require is too long
Pos: 9:82
Avoid to use low level calls.
Pos: 51:84
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 17:98
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1012
Variable "_refundAddress" is unused
Pos: 9:1096
Variable "messageValue" is unused
Pos: 9:1098
Variable "_eid" is unused
Pos: 9:1131
Variable "_msgType" is unused
Pos: 9:1132
Code contains empty blocks
Pos: 81:1149
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:1290
Code contains empty blocks
Pos: 86:1290
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 3:1520

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

