
Project: MATH Token
Website: mathwallet.org
Platform: Base Chain Network
Language: Solidity
Date: June 18th, 2024

https://mathwallet.org/en-us/

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. .7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 22

● Solhint Linter …………………………………………………………………….……….. 23

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the MATH Token
smart contract from mathwallet.org was audited extensively. The audit has been performed
using manual analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on June 18th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

Math Wallet is a multichain wallet designed for Web3, supporting over 195 public chains

including Ethereum, Bitcoin, Solana, and Cosmos. It offers various interfaces such as a

mobile app, browser extension, and web wallet. Features include a DApp store, NFT

wallet, staking tools, and multi-chain gas tracker. It supports mainstream blockchains,

EVM-compatible chains, Substrate-based chains, and CosmosSDK chains. Math Wallet

integrates with hardware wallets like Ledger and supports multiple browsers.

Code Details
● This Solidity code defines an ERC20-compatible token named "MATH Token" with

the symbol "MATH" and 18 decimals. It includes various functionalities:

○ SafeMath Library: Provides safe arithmetic operations to prevent overflow

and underflow.

○ BasicToken and StandardToken Contracts: Implement basic ERC20

functions like balance management, transfer, and approval.

○ Ownable Contract: Defines ownership and transfer of ownership.

○ MintableToken Contract: Allows minting of new tokens, with a cap on total

supply.

○ PausableToken Contract: Allows pausing and unpausing of token transfers.
○ MATHToken Contract: Combines all functionalities and sets the total supply

to 200 million tokens.

Audit scope

Name Code Review and Security Analysis Report for
MATH Token Smart Contract

Platform Base Chain Network

Language Solidity

File MATHToken.sol

Smart Contract Code 0x9e81f6495ba29a6b4d48bddd042c0598fa8abc9f

Audit Date June 18th,2024

Audit Result Passed

https://basescan.org/token/0x9e81f6495ba29a6b4d48bddd042c0598fa8abc9f#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

1 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

1
Total

Findings

0
Critical

0
High

0
Medium

0
Low

1
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Tokenomics:
● Name: MATH Token

● Symbol: MATH

● Decimals: 18

● Total Supply: 0.2 billion

● Mint Total: 5 million

YES, This is valid.

Owner Specifications:
● Allows pausing and unpausing of token

transfers.

● Allows minting of new tokens.

● Allows the current owner to transfer control of

the contract to a new owner.

YES, This is valid.
We advise renouncing
ownership once the
ownership functions are not
needed. This is to make the
smart contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 1 very low-level issue.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Yes

Pause Transfer? Yes

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? No

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in MATH Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the MATH Token.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a MATH Token smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/token/0x9e81f6495ba29a6b4d48bddd042c0598fa8abc9f#code

AS-IS overview

MATHToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 transfer write Passed No Issue
3 transferFrom write Passed No Issue
4 approve write Passed No Issue
5 increaseApproval write Passed No Issue
6 decreaseApproval write Passed No Issue
7 canMint modifier Passed No Issue
8 hasMintPermission modifier Passed No Issue
9 mint write has Mint

Permission
No Issue

10 whenNotPaused modifier Passed No Issue
11 whenPaused modifier Passed No Issue
12 pause write access only

Owner
No Issue

13 unpause write access only
Owner

No Issue

14 onlyOwner modifier Passed No Issue
15 transferOwnership write access only

Owner
No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:
[I-01] Make variables constant:

// public variables

string public name = "MATH Token";

string public symbol = "MATH";

uint8 public decimals = 18;

Description:
These variable values will remain unchanged.

Recommendation: We suggest making them constant. It is best practice and it also

saves some gas. Just add a constant keyword.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Owner functions:

Pausable.sol
● pause: Allows pausing of token transfers only by the owner.

● unpause: Allows unpausing of token transfers only by the owner.

MintableToken.sol
● mint: Allows minting of new tokens only by the owner.

Ownable.sol
● transferOwnership: Allows the current owner to transfer control of the contract to a

newOwner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 1 Informational issue in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/token/0x9e81f6495ba29a6b4d48bddd042c0598fa8abc9f#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - MATH Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

MATHToken.sol

INFO:Detectors:
SafeMath.div(uint256,uint256) (MATHToken.sol#30-35) is never used and should be removed
SafeMath.mul(uint256,uint256) (MATHToken.sol#18-25) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.4.23 (MATHToken.sol#6) allows old versions
solc-0.4.26 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter BasicToken.transfer(address,uint256)._to (MATHToken.sol#90) is not in mixedCase
Parameter BasicToken.transfer(address,uint256)._value (MATHToken.sol#90) is not in mixedCase
Parameter BasicToken.balanceOf(address)._owner (MATHToken.sol#105) is not in mixedCase
Parameter StandardToken.transferFrom(address,address,uint256)._from (MATHToken.sol#147) is
not in mixedCase
Parameter StandardToken.transferFrom(address,address,uint256)._to (MATHToken.sol#148) is
not in mixedCase
Parameter StandardToken.transferFrom(address,address,uint256)._value (MATHToken.sol#149)
is not in mixedCase
Parameter StandardToken.approve(address,uint256)._spender (MATHToken.sol#175) is not in
mixedCase
Parameter StandardToken.approve(address,uint256)._value (MATHToken.sol#175) is not in
mixedCase
Parameter StandardToken.allowance(address,address)._owner (MATHToken.sol#188) is not in
mixedCase
Parameter StandardToken.allowance(address,address)._spender (MATHToken.sol#189) is not in
mixedCase
Parameter StandardToken.increaseApproval(address,uint256)._spender (MATHToken.sol#209) is
not in mixedCase
Parameter StandardToken.increaseApproval(address,uint256)._addedValue
(MATHToken.sol#210) is not in mixedCase

Parameter StandardToken.decreaseApproval(address,uint256)._spender (MATHToken.sol#232)
is not in mixedCase
Parameter StandardToken.decreaseApproval(address,uint256)._subtractedValue
(MATHToken.sol#233) is not in mixedCase
Parameter MintableToken.mint(address,uint256)._to (MATHToken.sol#322) is not in mixedCase
Parameter MintableToken.mint(address,uint256)._amount (MATHToken.sol#323) is not in
mixedCase
Parameter PausableToken.transfer(address,uint256)._to (MATHToken.sol#393) is not in
mixedCase
Parameter PausableToken.transfer(address,uint256)._value (MATHToken.sol#394) is not in
mixedCase
Parameter PausableToken.transferFrom(address,address,uint256)._from (MATHToken.sol#404) is
not in mixedCase
Parameter PausableToken.transferFrom(address,address,uint256)._to (MATHToken.sol#405) is
not in mixedCase
Parameter PausableToken.transferFrom(address,address,uint256)._value (MATHToken.sol#406)
is not in mixedCase
Parameter PausableToken.approve(address,uint256)._spender (MATHToken.sol#416) is not in
mixedCase
Parameter PausableToken.approve(address,uint256)._value (MATHToken.sol#417) is not in
mixedCase
Parameter PausableToken.increaseApproval(address,uint256)._spender (MATHToken.sol#427) is
not in mixedCase
Parameter PausableToken.increaseApproval(address,uint256)._addedValue
(MATHToken.sol#428) is not in mixedCase
Parameter PausableToken.decreaseApproval(address,uint256)._spender (MATHToken.sol#438)
is not in mixedCase
Parameter PausableToken.decreaseApproval(address,uint256)._subtractedValue
(MATHToken.sol#439) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
MATHToken.constructor() (MATHToken.sol#455-457) uses literals with too many digits:

- totalSupply_ = 200000000 * (10 ** uint256(decimals)) (MATHToken.sol#456)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
MATHToken.decimals (MATHToken.sol#453) should be constant
MATHToken.name (MATHToken.sol#451) should be constant
MATHToken.symbol (MATHToken.sol#452) should be constant
MintableToken.mintingFinished (MATHToken.sol#302) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Slither:MATHToken.sol analyzed (10 contracts with 93 detectors), 37 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

MATHToken.sol

Gas costs:
Gas requirement of function MATHToken.transferFrom is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 146:2:

Gas costs:
Gas requirement of function MATHToken.mint is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 321:2:

Constant/View/Pure functions:
MATHToken.() : Potentially should be constant/view/pure but is not. Note: Modifiers are currently
not considered by this static analysis.
Pos: 455:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 364:4:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 34:11:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

MATHToken.sol

Compiler version ^0.4.23 does not satisfy the ^0.5.8 semver requirement
Pos: 1:5
Explicitly mark visibility of state
Pos: 3:73
Explicitly mark visibility of state
Pos: 3:75
Provide an error message for require
Pos: 5:90
Provide an error message for require
Pos: 5:91
Provide an error message for require
Pos: 5:153
Provide an error message for require
Pos: 5:154
Provide an error message for require
Pos: 5:155
Provide an error message for require
Pos: 5:277
Provide an error message for require
Pos: 5:286
Provide an error message for require
Pos: 5:305
Provide an error message for require
Pos: 5:310
Visibility modifier must be first in list of modifiers
Pos: 5:326
Provide an error message for require
Pos: 5:330
Provide an error message for require
Pos: 5:355
Provide an error message for require
Pos: 5:363
Visibility modifier must be first in list of modifiers
Pos: 44:370
Visibility modifier must be first in list of modifiers
Pos: 43:378

Provide an error message for revert
Pos: 9:459

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

