
Project: Magic Internet Money
Website: abracadabra.money
Platform: Base Chain Network
Language: Solidity
Date: June 18th, 2024

https://abracadabra.money/

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. .7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 23

● Solhint Linter …………………………………………………………………….……….. 24

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Magic Internet
Money smart contract from abracadabra.money was audited extensively. The audit has
been performed using manual analysis as well as using automated software tools. This
report presents all the findings regarding the audit performed on June 18th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

● Abracadabra.money is a Omnichain DeFi lending platform that works its magic by

utilizing interest-bearing tokens as collateral to mint Magic Internet Money, a

USD-Denominated stablecoin.

● It enables users to leverage interest-bearing tokens as collateral to mint the

stablecoin MIM (Magic Internet Money). The platform supports various DeFi

strategies and offers services like borrowing, staking, and farming to maximize

yield.

Code Details
● This Solidity contract defines a Mintable and Burnable ERC20 token with owner and

operator permissions.

● Components:
○ IMintableBurnable Interface: Defines burn and mint functions.

○ Owned Contract: Manages ownership with transfer capabilities.

○ ERC20 Contract: Implements ERC20 token functionalities and EIP-2612

permits.

○ OperatableV2 Contract: Manages operators who can mint and burn tokens.

○ MintableBurnableERC20 Contract: Combines the above contracts, allowing

only operators to mint and burn tokens.

● Key Functions:
○ mint(address to, uint256 amount)`: Mints new tokens to a specified address.

○ burn(address from, uint256 amount)`: Burns tokens from a specified address.

○ setOperator(address operator, bool status)`: Sets an address as an operator.

Audit scope

Name Code Review and Security Analysis Report for Magic
Internet Money(MIM) Smart Contract

Platform Base Chain Network

Language Solidity

File MintableBurnableERC20.sol

Smart Contract Code 0x4A3A6Dd60A34bB2Aba60D73B4C88315E9CeB6A3D

Audit Date June 18th,2024

Audit Result Passed

https://basescan.org/token/0x4A3A6Dd60A34bB2Aba60D73B4C88315E9CeB6A3D#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

3 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

2 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

5
Total

Findings

0
Critical

0
High

0
Medium

3
Low

2
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Tokenomics:
● Name: Magic Internet Money

● Symbol: MIM

● Decimals: 18

YES, This is valid.

Key Functions:
● mint(address to, uint256 amount)`: Mints new

tokens to a specified address.

● burn(address from, uint256 amount)`: Burns

tokens from a specified address.

● setOperator(address operator, bool status)`:

Sets an address as an operator.

YES, This is valid.

Owner Specifications:
● The operator's address can be updated.

● Allows the current owner to transfer control of

the contract to a new owner.

YES, This is valid.
We advise renouncing
ownership once the
ownership functions are not
needed. This is to make the
smart contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 3 low, and 2 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? No

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Magic Internet Money are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Magic Internet Money.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Magic Internet Money smart contract code in the form of a basescan web

link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/token/0x4A3A6Dd60A34bB2Aba60D73B4C88315E9CeB6A3D#code

AS-IS overview

MintableBurnableERC20.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Empty

Constructor
Present

Refer Audit
Findings

2 burn external Operators can
burn anyone’s

token

Refer Audit
Findings

3 mint external Unlimited
token minting

Refer Audit
Findings

4 onlyOperators modifier Passed No Issue
5 setOperator external access only

owner
No Issue

6 approve write Passed No Issue
7 transfer write Passed No Issue
8 transferFrom write Passed No Issue
9 permit write Passed No Issue
10 DOMAIN_SEPARATOR read Passed No Issue
11 computeDomainSeparator internal Passed No Issue
12 _mint internal Passed No Issue
13 _burn internal Passed No Issue
14 onlyOwner modifier Passed No Issue
15 transferOwnership write Function input

parameters
lack of check

Refer Audit
Findings

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

[L-01] Operators can burn anyone’s token:

Description:
Operators can burn any user’s tokens.

Recommendation: We suggest changing the code so only token holders can burn their

own tokens and not anyone else. Not even a contract creator.

[L-02] Unlimited token minting:

function mint(address to, uint256 amount) external onlyOperators

returns (bool) {

_mint(to, amount);

return true;

}

Description:
The contract allows unlimited token creation, risking inflation and devaluation.

Recommendation: We suggest Implementing a maximum token supply cap and

restricting minting permissions to trusted entities.

[L-03] Function input parameters lack of check:

function transferOwnership(address newOwner) public virtual

onlyOwner {

owner = newOwner;

emit OwnershipTransferred(msg.sender, newOwner);

}

Description:
functions require validation before execution.

Functions are:

● transferOwnership()

Recommendation: We suggest using validation, like for numerical variables that should

be greater than 0, and for address-type check variables that are not addressed (0). For

percentage-type variables, values should have some range, like a minimum of 0 and a

maximum of 100.

Very Low / Informational / Best practices:
[I-01] Empty Constructor Present:

constructor(

address _owner,

string memory name_,

string memory symbol_,

uint8 decimals_

) ERC20(name_, symbol_, decimals_) OperatableV2(_owner) {}

Description:
The smart contract includes an empty constructor, which serves no functional purpose.

This can lead to confusion and unnecessary code complexity.

Recommendation: We suggest considering removing the empty constructor to clean up

the code. If the constructor is intended for future use, ensure it includes relevant logic or

documentation to clarify its purpose.

[I-02] Eliminate IMintableBurnable Interface Dependency:

interface IMintableBurnable {

function burn(address from, uint256 amount) external returns

(bool);

function mint(address to, uint256 amount) external returns

(bool);

}

Description:
If the IMintableBurnable interface is removed, it will not affect the existing functionality.

Recommendation: We suggest IMintableBurnable interface, Removing the

IMintableBurnable interface would not affect the functionality of your contract directly

because the actual implementation of the burn and mint functions exists within the

MintableBurnableERC20 contract itself.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Owner functions:

OperatableV2.sol
● setOperator: The operator address can be set by the owner.

Ownable.sol
● transferOwnership: Allows the current owner to transfer control of the contract to a

newOwner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 3 low and 2 Informational

issues in the smart contracts. but those are not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://basescan.org/token/0x4A3A6Dd60A34bB2Aba60D73B4C88315E9CeB6A3D#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Magic Internet Money

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

MintableBurnableERC20.sol

INFO:Detectors:
Owned.transferOwnership(address).newOwner (MintableBurnableERC20.sol#44) lacks a
zero-check on :

- owner = newOwner (MintableBurnableERC20.sol#45)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
ERC20.permit(address,address,uint256,uint256,uint8,bytes32,bytes32)
(MintableBurnableERC20.sol#160-204) uses timestamp for comparisons

Dangerous comparisons:
- require(bool,string)(deadline >= block.timestamp,PERMIT_DEADLINE_EXPIRED)

(MintableBurnableERC20.sol#169)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Pragma version>=0.8.0 (MintableBurnableERC20.sol#2) allows old versions
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Function ERC20.DOMAIN_SEPARATOR() (MintableBurnableERC20.sol#206-208) is not in
mixedCase
Variable ERC20.INITIAL_CHAIN_ID (MintableBurnableERC20.sol#85) is not in mixedCase
Variable ERC20.INITIAL_DOMAIN_SEPARATOR (MintableBurnableERC20.sol#87) is not in
mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:MintableBurnableERC20.sol analyzed (5 contracts with 93 detectors), 7 result(s)
found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

MintableBurnableERC20.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 169:28:

Gas costs:
Gas requirement of function MintableBurnableERC20.mint is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 294:4:

Constant/View/Pure functions:
IMintableBurnable.burn(address,uint256) : Potentially should be constant/view/pure but is not.
Note: Modifiers are currently not considered by this static analysis.
Pos: 5:4:

Similar variable names:
OperatableV2.setOperator(address,bool) : Variables have very similar names "operator" and
"operators". Note: Modifiers are currently not considered by this static analysis.
Pos: 272:29:

No return:
IMintableBurnable.mint(address,uint256): Defines a return type but never explicitly returns a
value.
Pos: 7:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 198:12:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

MintableBurnableERC20.sol

Compiler version >=0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:33
Variable name must be in mixedCase
Pos: 5:84
Variable name must be in mixedCase
Pos: 5:86
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:94
Avoid making time-based decisions in your business logic
Pos: 29:168
Function name must be in mixedCase
Pos: 5:205
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:258
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:281
Code contains empty blocks
Pos: 61:286

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

