
Project: Osaka Protocol
Website: osaka.win
Platform: Base Chain Network
Language: Solidity
Date: June 10th, 2024

https://osaka.win/
https://wormhole.com/ecosystem/w-token

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. .7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 27

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the Osaka Protocol
(OSAK) smart contract from osaka.win was audited extensively. The audit has been
performed using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on June 10th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

● A decentralized finance initiative that aims to create an environment of equality and

shared responsibility, promoting the concept that ownership percentage equates to

one's level of responsibility and influence.

● Each holder's power is proportionate to their ownership stake, It aims to cultivate a

thriving ecosystem driven by community collaboration and true decentralization.

● Osaka Protocol is a platform that focuses on creating a secure and decentralized

ecosystem for digital asset management and transactions.

● It emphasizes user privacy, security, and efficient digital asset handling through its

various protocols and features.

Code Details
● This contract suite provides a comprehensive implementation for cross-chain token

transfers with support for fees and ERC20 token standards. The key functionalities

include:

○ Cross-chain token transfers with fee handling.

○ Estimating transfer and call fees.

○ Event logging for transparency and auditing.

○ Integration with LayerZero for cross-chain communication.

● This setup is particularly useful for decentralized finance (DeFi) applications where

cross-chain token transfers and interoperability are critical.

Audit scope

Name Code Review and Security Analysis Report for
Osaka Protocol (OSAK) Smart Contract

Platform Base Chain Network

Language Solidity

File OFTWithFee.sol

Smart Contract Code 0xbFd5206962267c7b4b4A8B3D76AC2E1b2A5c4d5e

Audit Date June 10th,2024

Audit Result Passed

https://basescan.org/token/0xbFd5206962267c7b4b4A8B3D76AC2E1b2A5c4d5e#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

0 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

0
Total

Findings

0
Critical

0
High

0
Medium

0
Low

0
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Tokenomics:
● Name: Osaka Protocol

● Symbol: OSAK

● Decimals: 18

● Shared Decimals: 4

● Default Fee BP: 10

YES, This is valid.

Owner Specifications:
● Update generic config for LayerZero user Application.

● Update the send/receive version.

● Set the trusted path for cross-chain communication.

● Set the precrime address.

● Set the payload size limit.

● Set default fee bp.

● Set the fee of the owner.

● The current owner can transfer ownership of the

contract to a new account.

● Deleting ownership will leave the contract without an

owner, removing any owner-only functionality.

YES, This is valid.
We advise
renouncing
ownership once the
ownership functions
are not needed. This
is to make the smart
contract 100%
decentralized.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Well Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 0 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? Yes

Is it used Open Source? Yes

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? No

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the Osaka Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the Osaka Protocol.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an Osaka Protocol (OSAK) smart contract code in the form of a basescan

web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

-

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://basescan.org/token/0xbFd5206962267c7b4b4A8B3D76AC2E1b2A5c4d5e#code

AS-IS overview

OFTWithFee.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 circulating supply read Passed No Issue
3 token read Passed No Issue
4 _debitFrom internal Passed No Issue
5 _creditTo internal Passed No Issue
6 _transferFrom internal Passed No Issue
7 _ld2sdRate internal Passed No Issue
8 sendFrom write Passed No Issue
9 sendAndCall write Passed No Issue
10 supportsInterface read Passed No Issue
11 estimateSendFee read Passed No Issue
12 estimateSendAndCallFee read Passed No Issue
13 circulatingSupply read Passed No Issue
14 token read Passed No Issue
15 _transferFrom read Passed No Issue
16 name read Passed No Issue
17 symbol read Passed No Issue
18 decimals read Passed No Issue
19 totalSupply read Passed No Issue
20 balanceOf read Passed No Issue
21 transfer write Passed No Issue
22 allowance read Passed No Issue
23 approve write Passed No Issue
24 transferFrom write Passed No Issue
25 increaseAllowance write Passed No Issue
26 decreaseAllowance write Passed No Issue
27 _transfer internal Passed No Issue
28 _mint internal Passed No Issue
29 _burn internal Passed No Issue
30 _approve internal Passed No Issue
31 _spendAllowance internal Passed No Issue
32 _beforeTokenTransfer internal Passed No Issue
33 _afterTokenTransfer internal Passed No Issue
34 callOnOFTReceived write Passed No Issue
35 _estimateSendFee internal Passed No Issue
36 _estimateSendAndCallFee internal Passed No Issue
37 _nonblockingLzReceive internal Passed No Issue
38 _send internal Passed No Issue
39 _sendAck internal Passed No Issue
40 _sendAndCall internal Passed No Issue
41 _sendAndCallAck internal Passed No Issue

42 _isContract internal Passed No Issue
43 _ld2sd internal Passed No Issue
44 _sd2ld internal Passed No Issue
45 _removeDust internal Passed No Issue
46 _encodeSendPayload internal Passed No Issue
47 _decodeSendPayload internal Passed No Issue
48 _encodeSendAndCallPayload internal Passed No Issue
49 _decodeSendAndCallPayload read Passed No Issue
50 _addressToBytes32 internal Passed No Issue
51 _debitFrom internal Passed No Issue
52 _creditTo internal Passed No Issue
53 _transferFrom internal Passed No Issue
54 _ld2sdRate internal Passed No Issue
55 setDefaultFeeBp write access only

owner
No Issue

56 setFeeBp write access only
owner

No Issue

57 setFeeOwner write access only
owner

No Issue

58 quoteOFTFee read Passed No Issue
59 _payOFTFee internal Passed No Issue
60 _transferFrom internal Passed No Issue
61 _blockingLzReceive internal Passed No Issue
62 _storeFailedMessage internal Passed No Issue
63 nonblockingLzReceive write Passed No Issue
64 _nonblockingLzReceive internal Passed No Issue
65 retryMessage write Passed No Issue
66 lzReceive write Passed No Issue
67 _blockingLzReceive internal Passed No Issue
68 _lzSend internal Passed No Issue
69 _checkGasLimit internal Passed No Issue
70 _getGasLimit internal Passed No Issue
71 _checkPayloadSize internal Passed No Issue
72 getConfig external Passed No Issue
73 setConfig external access only

owner
No Issue

74 setSendVersion external access only
owner

No Issue

75 setReceiveVersion external access only
owner

No Issue

76 forceResumeReceive external access only
owner

No Issue

77 setTrustedRemote external access only
owner

No Issue

78 setTrustedRemoteAddress external access only
owner

No Issue

79 getTrustedRemoteAddress external Passed No Issue

80 setPrecrime external access only
owner

No Issue

81 setMinDstGas external access only
owner

No Issue

82 setPayloadSizeLimit external access only
owner

No Issue

83 isTrustedRemote external Passed No Issue
84 onlyOwner modifier Passed No Issue
85 owner r Passed No Issue
86 _checkOwner internal Passed No Issue
87 renounceOwnership write access only

owner
No Issue

88 transferOwnership write access only
owner

No Issue

89 _transferOwnership internal Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:
No Very-Low-severity vulnerabilities were found.

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Admin functions:

LzApp.sol
● setConfig: The owner can create a generic config for the LayerZero user

Application.

● setSendVersion: The owner can update the send version.

● setReceiveVersion: The owner can update the receive version.

● forceResumeReceive: The owner can force resume receiver ID.

● setTrustedRemote: The owner can set the trusted path for the cross-chain

communication.

● setTrustedRemoteAddress: The owner can set the trusted path for the cross-chain

communication address.

● setPrecrime: The owner can set the precrime address.

● setMinDstGas: The owner can set a minimum DST gas.

● setPayloadSizeLimit: The owner can set the payload size limit.

Fee.sol
● setDefaultFeeBp: The owner can set default fee bp.

● setFeeBp: The owner can set fee bp.

● setFeeOwner: The owner can set the fee of the owner.

Ownable.sol
● renounceOwnership: Deleting ownership will leave the contract without an owner,

removing any owner-only functionality.

● transferOwnership: Current owner can transfer ownership of the contract to a new

account.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed no issue in the smart

contracts. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Well Secured”.

https://basescan.org/token/0xbFd5206962267c7b4b4A8B3D76AC2E1b2A5c4d5e#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Osaka Protocol (OSAK)

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

OFTWithFee.sol

INFO:Detectors:
OFTWithFee.constructor(string,string,uint8,address)._name (OFTWithFee.sol#1399) shadows:

- ERC20._name (OFTWithFee.sol#652) (state variable)
OFTWithFee.constructor(string,string,uint8,address)._symbol (OFTWithFee.sol#1399) shadows:

- ERC20._symbol (OFTWithFee.sol#653) (state variable)
OFTWithFee.constructor(string,string,uint8,address).decimals (OFTWithFee.sol#1400) shadows:

- ERC20.decimals() (OFTWithFee.sol#668-670) (function)
- IERC20Metadata.decimals() (OFTWithFee.sol#27) (function)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Reentrancy in OFTCoreV2._send(address,uint16,bytes32,uint256,address,address,bytes)
(OFTWithFee.sol#1164-1183):

External calls:
-

_lzSend(_dstChainId,lzPayload,_refundAddress,_zroPaymentAddress,_adapterParams,msg.value
) (OFTWithFee.sol#1180)

- lzEndpoint.send{value:
_nativeFee}(_dstChainId,trustedRemote,_payload,_refundAddress,_zroPaymentAddress,_adapter
Params) (OFTWithFee.sol#848)

Event emitted after the call(s):
- SendToChain(_dstChainId,_from,_toAddress,amount) (OFTWithFee.sol#1182)

Reentrancy in
OFTCoreV2._sendAndCall(address,uint16,bytes32,uint256,bytes,uint64,address,address,bytes)
(OFTWithFee.sol#1202-1223):

External calls:
-

_lzSend(_dstChainId,lzPayload,_refundAddress,_zroPaymentAddress,_adapterParams,msg.value
) (OFTWithFee.sol#1220)

- lzEndpoint.send{value:
_nativeFee}(_dstChainId,trustedRemote,_payload,_refundAddress,_zroPaymentAddress,_adapter

Params) (OFTWithFee.sol#848)
Event emitted after the call(s):
- SendToChain(_dstChainId,_from,_toAddress,amount) (OFTWithFee.sol#1222)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Pragma version^0.8.0 (OFTWithFee.sol#2) allows old versions
solc-0.8.0 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter
BaseOFTWithFee.sendFrom(address,uint16,bytes32,uint256,uint256,ICommonOFT.LzCallParam
s)._from (OFTWithFee.sol#1363) is not in mixedCase
Parameter
BaseOFTWithFee.sendFrom(address,uint16,bytes32,uint256,uint256,ICommonOFT.LzCallParam
s)._dstChainId (OFTWithFee.sol#1363) is not in mixedCase
Parameter
BaseOFTWithFee.sendFrom(address,uint16,bytes32,uint256,uint256,ICommonOFT.LzCallParam
s)._toAddress (OFTWithFee.sol#1363) is not in mixedCase
Parameter
BaseOFTWithFee.sendFrom(address,uint16,bytes32,uint256,uint256,ICommonOFT.LzCallParam
s)._amount (OFTWithFee.sol#1363) is not in mixedCase
Parameter
BaseOFTWithFee.sendFrom(address,uint16,bytes32,uint256,uint256,ICommonOFT.LzCallParam
s)._minAmount (OFTWithFee.sol#1363) is not in mixedCase
Parameter
BaseOFTWithFee.sendFrom(address,uint16,bytes32,uint256,uint256,ICommonOFT.LzCallParam
s)._callParams (OFTWithFee.sol#1363) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon
OFT.LzCallParams)._from (OFTWithFee.sol#1369) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon
OFT.LzCallParams)._dstChainId (OFTWithFee.sol#1369) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon
OFT.LzCallParams)._toAddress (OFTWithFee.sol#1369) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon
OFT.LzCallParams)._amount (OFTWithFee.sol#1369) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon
OFT.LzCallParams)._minAmount (OFTWithFee.sol#1369) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon
OFT.LzCallParams)._payload (OFTWithFee.sol#1369) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon

OFT.LzCallParams)._dstGasForCall (OFTWithFee.sol#1369) is not in mixedCase
Parameter
BaseOFTWithFee.sendAndCall(address,uint16,bytes32,uint256,uint256,bytes,uint64,ICommon
OFT.LzCallParams)._callParams (OFTWithFee.sol#1369) is not in mixedCase
Parameter BaseOFTWithFee.estimateSendFee(uint16,bytes32,uint256,bool,bytes)._dstChainId
(OFTWithFee.sol#1379) is not in mixedCase
Parameter BaseOFTWithFee.estimateSendFee(uint16,bytes32,uint256,bool,bytes)._toAddress
(OFTWithFee.sol#1379) is not in mixedCase
Parameter BaseOFTWithFee.estimateSendFee(uint16,bytes32,uint256,bool,bytes)._amount
(OFTWithFee.sol#1379) is not in mixedCase
Parameter BaseOFTWithFee.estimateSendFee(uint16,bytes32,uint256,bool,bytes)._useZro
(OFTWithFee.sol#1379) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendFee(uint16,bytes32,uint256,bool,bytes)._adapterParams
(OFTWithFee.sol#1379) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendAndCallFee(uint16,bytes32,uint256,bytes,uint64,bool,bytes)._ds
tChainId (OFTWithFee.sol#1383) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendAndCallFee(uint16,bytes32,uint256,bytes,uint64,bool,bytes)._to
Address (OFTWithFee.sol#1383) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendAndCallFee(uint16,bytes32,uint256,bytes,uint64,bool,bytes)._a
mount (OFTWithFee.sol#1383) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendAndCallFee(uint16,bytes32,uint256,bytes,uint64,bool,bytes)._pa
yload (OFTWithFee.sol#1383) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendAndCallFee(uint16,bytes32,uint256,bytes,uint64,bool,bytes)._ds
tGasForCall (OFTWithFee.sol#1383) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendAndCallFee(uint16,bytes32,uint256,bytes,uint64,bool,bytes)._us
eZro (OFTWithFee.sol#1383) is not in mixedCase
Parameter
BaseOFTWithFee.estimateSendAndCallFee(uint16,bytes32,uint256,bytes,uint64,bool,bytes)._ad
apterParams (OFTWithFee.sol#1383) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
ExcessivelySafeCall.slitherConstructorConstantVariables() (OFTWithFee.sol#397-467) uses
literals with too many digits:

- LOW_28_MASK = 0x00000000ff
(OFTWithFee.sol#398)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Slither:OFTWithFee.sol analyzed (21 contracts with 93 detectors), 163 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

OFTWithFee.sol

Inline assembly:
The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.
more
Pos: 610:8:

This on local calls:
Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes more gas than normal local calls.
more
Pos: 1360:35:

Similar variable names:
OFTCoreV2._sendAck(uint16,bytes,uint64,bytes) : Variables have very similar names
"amountSD" and "amount". Note: Modifiers are currently not considered by this static analysis.
Pos: 1294:8:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
more
Pos: 1509:8:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 1377:24:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

OFTWithFee.sol

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:864
Error message for require is too long
Pos: 9:879
Error message for require is too long
Pos: 9:904
Check result of "send" call
Pos: 9:906
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 9:923
Code contains empty blocks
Pos: 53:1022
Error message for require is too long
Pos: 9:1064
Error message for require is too long
Pos: 9:1084
Error message for require is too long
Pos: 9:1085
Error message for require is too long
Pos: 9:1115
Error message for require is too long
Pos: 9:1121
Explicitly ma
Code contains empty blocks
Pos: 101:1461
Error message for require is too long
Pos: 9:1470
Error message for require is too long
Pos: 9:1476
Error message for require is too long
Pos: 9:1508

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

