
Project: USD+
Website: overnight.fi
Platform: Base Chain Network
Language: Solidity
Date: May 29th, 2024

https://overnight.fi/

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. .7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 27

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the USD+ smart
contract from overnight.fi was audited extensively. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 29th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

Overnight.fi is a platform focused on optimizing returns for stablecoin assets. It offers

users a way to earn a yield on their digital assets by leveraging various decentralized

finance (DeFi) protocols. The website emphasizes security and ease of use, aiming to

provide a stable and reliable income stream for users without the need to actively manage

their investments.

Code Details
● The solidity smart contract code provided is an implementation of an upgradeable

ERC20 token with special features such as rebasing and non-rebasing supply

management. This contract, named `UsdPlusToken`, incorporates several

OpenZeppelin libraries and utilizes a proxy pattern for upgrades.

● Imports: Essential OpenZeppelin libraries are imported for ERC20 token standard,

access control, upgradeability, and utility functions.

● Minting and Burning:

○ Functions to mint and burn tokens, updating supply and balances.

○ Restricted to the exchanger role to ensure only authorized contracts can

mint/burn tokens.

● Rebasing Management:
○ Functions to opt-in and opt-out of rebasing, which adjust the account’s

credits and the overall non-rebasing supply.

○ Internal `_isNonRebasingAccount` checks the rebasing state of an account.

● Upgradeability:
○ `_authorizeUpgrade` function to handle contract upgrades securely,

restricted to the admin role.

Audit scope

Name Code Review and Security Analysis Report for USD+
Smart Contract

Platform Base Chain Network

Language Solidity

File UsdPlusToken.sol

Smart Contract Code 0x8de5410692c0bc722695f17ca4dd55c9506052c6

Audit Date May 29th,2024

Audit Result Passed

https://basescan.org/address/0x8de5410692c0bc722695f17ca4dd55c9506052c6#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

5 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

5
Total

Findings

0
Critical

0
High

0
Medium

0
Low

5
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Specifications:
● Admin roles upgrade by default admin.

● The exchanger address can be set by the admin.

● The Payout Manager address can be set by the admin.

● The Manager address can be set by the admin.

● Pause/Unpause status set true by the Portfolio Agent.

● Mints new tokens, increasing total supply only by the

Exchanger.

● Burns tokens, decreasing total Supply only by the only

Exchanger.

● Modify the supply without minting new tokens only by

the Exchanger.

YES, This is valid.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 5 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Yes

Pause Transfer? Yes

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? Yes

Is it used Open Source? Yes

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? Yes

Ownership Renounce? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in USD+ are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties/methods can be reused many times by

other contracts in the USD+.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a USD+ smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/address/0x8de5410692c0bc722695f17ca4dd55c9506052c6#code

AS-IS overview

UsdPlusToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 initialize write Compile time

warnings
Refer Audit
Findings

4 _authorizeUpgrade internal DEFAULT_AD
MIN_ROLE

No Issue

5 onlyExchanger modifier Passed No Issue
6 onlyPayoutManager modifier Passed No Issue
7 onlyPortfolioAgent modifier Passed No Issue
8 onlyAdmin modifier Passed No Issue
9 notPaused modifier Passed No Issue
10 setExchanger external access only

Admin
No Issue

11 setPayoutManager external access only
Admin

No Issue

12 setRoleManager external access only
Admin

No Issue

13 pause write access only
Portfolio Agent

No Issue

14 unpause write access only
Portfolio Agent

No Issue

15 name write Compile time
warnings

Refer Audit
Findings

16 symbol write Compile time
warnings

Refer Audit
Findings

17 decimals read Passed No Issue
18 ownerLength external Passed No Issue
19 nonRebaseOwnersLength external Passed No Issue
20 ownerAt external Passed No Issue
21 ownerBalanceAt external Passed No Issue
22 totalSupplyOwners external Passed No Issue
23 totalSupply read Passed No Issue
24 rebasingCreditsPerToken read Passed No Issue
25 rebasingCredits read Passed No Issue
26 rebasingCreditsPerTokenHighres read Passed No Issue
27 rebasingCreditsHighres read Passed No Issue
28 balanceOf read Passed No Issue
29 creditsBalanceOf read Passed No Issue
30 creditsBalanceOfHighres read Passed No Issue
31 transfer write Passed No Issue

32 assetToCredit read Missing-zero-a
ddress-validati

on

Refer Audit
Findings

33 creditToAsset read Missing-zero-a
ddress-validati

on

Refer Audit
Findings

34 subCredits read Missing-zero-a
ddress-validati

on

Refer Audit
Findings

35 transferFrom write Passed No Issue
36 _executeTransfer internal Passed No Issue
37 allowance read Passed No Issue
38 approve write Passed No Issue
39 increaseAllowance write Passed No Issue
40 decreaseAllowance write Passed No Issue
41 mint external access only

exchanger
No Issue

42 _mint internal Passed No Issue
43 burn external access only

exchanger
No Issue

44 _burn internal Passed No Issue
45 _creditsPerToken internal Passed No Issue
46 _isNonRebasingAccount internal Compile time

warnings
Refer Audit
Findings

47 rebaseOptIn write access only
Payout
Manager

No Issue

48 rebaseOptOut write access only
Payout
Manager

No Issue

49 changeSupply external access only
exchanger

No Issue

50 _beforeTokenTransfer internal Passed No Issue
51 _afterTokenTransfer internal Passed No Issue
52 __AccessControl_init internal access only

Initializing
No Issue

53 __AccessControl_init_unchained internal access only
Initializing

No Issue

54 onlyRole modifier Passed No Issue
55 supportsInterface read Passed No Issue
56 hasRole read Passed No Issue
57 _checkRole internal Passed No Issue
58 _checkRole internal Passed No Issue
59 getRoleAdmin read Passed No Issue
60 grantRole write Role Admin No Issue
61 revokeRole write role admin No Issue
62 renounceRole write Passed No Issue
63 _setupRole internal Passed No Issue
64 _setRoleAdmin internal Passed No Issue

65 _grantRole internal Passed No Issue
66 _revokeRole internal Passed No Issue
67 __UUPSUpgradeable_init internal access only

Initializing
No Issue

68 __UUPSUpgradeable_init_unchain
ed

internal access only
Initializing

No Issue

69 onlyProxy modifier Passed No Issue
70 notDelegated modifier Passed No Issue
71 proxiableUUID external Passed No Issue
72 upgradeTo external access only

Proxy
No Issue

73 upgradeToAndCall external access only
Proxy

No Issue

74 _authorizeUpgrade internal Passed No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

[I-01] Visibility can be external over the public:
Description:
Any functions which are not called internally should be declared as external. This saves

some gas and is considered a good practice.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

[I-02] Unused state variable:

uint256 private DELETED_1; // not used (liquidityIndex)

uint256 private DELETED_2; // not used (liquidityIndexDenominator)

Description:
DELETED_1 & DELETED_2 are defined but not used in the code.

Recommendation: We suggest removing unused variables.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

[I-03] Missing-zero-address-validation:

Description:
Detect missing zero address validation.

● assetToCredit()

● creditToAsset()

● subCredits()

without specifying the owner loses ownership of the contract.

Recommendation: We suggest first checking that the address is not zero.

[I-04] Language Specific:

// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0 <0.9.0;

Description:
The contract has an unlocked compiler version. An unlocked compiler version in the

source code of the contract permits the user to compile it at or above a particular version.

This, in turn, leads to differences in the generated bytecode between compilations due to

differing compiler version numbers. This can lead to ambiguity when debugging as

compiler-specific bugs may occur in the codebase that would be hard to identify over a

span of multiple compiler versions rather than a specific one.

Recommendation: We suggest that the compiler version is instead locked at the lowest

version possible that the contract can be compiled at.

[I-05] Compile time warnings:
Description:
Warning: This declaration shadows an existing declaration.
100 | function initialize(string calldata name, string calldata symbol, uint8 decimals)

initializer public {

178 | function name() public view returns (string memory) {

186 | function symbol() public view returns (string memory)

Recommendation: We suggest if a variable is declared in the function then no need to

declare it again in the same function. so we need to remove unwanted declarations.

Warning: Function state mutability can be restricted to view.
660 | function _isNonRebasingAccount(address _account) internal returns (bool)

Recommendation: We suggest state mutability.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are Owner functions:

UsdPlusToken.sol
● _authorizeUpgrade: Admin roles upgrade by default admin.

● setExchanger: The exchanger address can be set by the admin.

● setPayoutManager: The Payout Manager address can be set by the admin.

● setRoleManager: The Manager address can be set by the admin.

● pause: Pause status set true by the Portfolio Agent.

● unpause: Unpause status set true by the Portfolio Agent.

● mint: Mints new tokens, increasing total supply only by the Exchanger.

● burn: Burns tokens, decreasing total Supply only by the only Exchanger.

● changeSupply: Modify the supply without minting new tokens only by the

Exchanger.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed 5 Informational issues in the

smart contracts. but those are not critical. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

https://basescan.org/address/0x8de5410692c0bc722695f17ca4dd55c9506052c6#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - USD+

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

UsdPlusToken.sol

INFO:Detectors:
UsdPlusToken.initialize(string,string,uint8).name (UsdPlusToken.sol#1334) shadows:

- IERC20MetadataUpgradeable.name() (UsdPlusToken.sol#929) (function)
UsdPlusToken.initialize(string,string,uint8).symbol (UsdPlusToken.sol#1334) shadows:

- IERC20MetadataUpgradeable.symbol() (UsdPlusToken.sol#931) (function)
UsdPlusToken.initialize(string,string,uint8).decimals (UsdPlusToken.sol#1334) shadows:

- UsdPlusToken.decimals() (UsdPlusToken.sol#1406-1408) (function)
- IERC20MetadataUpgradeable.decimals() (UsdPlusToken.sol#933) (function)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
UsdPlusToken.totalSupplyOwners() (UsdPlusToken.sol#1426-1436) has external calls inside a
loop: total += this.balanceOf(_owners.at(index)) (UsdPlusToken.sol#1432)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
INFO:Detectors:
Pragma version^0.8.0 (UsdPlusToken.sol#2) allows old versions
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Constant WadRayMath.halfWAD (UsdPlusToken.sol#695) is not in
UPPER_CASE_WITH_UNDERSCORES
Constant WadRayMath.halfRAY (UsdPlusToken.sol#698) is not in
UPPER_CASE_WITH_UNDERSCORES
Parameter UsdPlusToken.setExchanger(address)._exchanger (UsdPlusToken.sol#1379) is not in
mixedCase
Parameter UsdPlusToken.setPayoutManager(address)._payoutManager
(UsdPlusToken.sol#1385) is not in mixedCase
Parameter UsdPlusToken.setRoleManager(address)._roleManager (UsdPlusToken.sol#1391) is
not in mixedCase
Parameter UsdPlusToken.balanceOf(address)._account (UsdPlusToken.sol#1458) is not in

mixedCase
Parameter UsdPlusToken.creditsBalanceOf(address)._account (UsdPlusToken.sol#1467) is not in
mixedCase
Parameter UsdPlusToken.creditsBalanceOfHighres(address)._account (UsdPlusToken.sol#1483)
is not in mixedCase
Parameter UsdPlusToken.transfer(address,uint256)._to (UsdPlusToken.sol#1497) is not in
mixedCase
Parameter UsdPlusToken.transfer(address,uint256)._value (UsdPlusToken.sol#1497) is not in
mixedCase
Parameter UsdPlusToken.transferFrom(address,address,uint256)._from
(UsdPlusToken.sol#1547) is not in mixedCase
Parameter UsdPlusToken.transferFrom(address,address,uint256)._to (UsdPlusToken.sol#1548) is
not in mixedCase
Parameter UsdPlusToken.transferFrom(address,address,uint256)._value
(UsdPlusToken.sol#1549) is not in mixedCase
Parameter UsdPlusToken.allowance(address,address)._owner (UsdPlusToken.sol#1593) is not in
mixedCase
Parameter UsdPlusToken.allowance(address,address)._spender (UsdPlusToken.sol#1593) is not
in mixedCase
Parameter UsdPlusToken.approve(address,uint256)._spender (UsdPlusToken.sol#1604) is not in
mixedCase
Parameter UsdPlusToken.approve(address,uint256)._value (UsdPlusToken.sol#1604) is not in
mixedCase
Parameter UsdPlusToken.increaseAllowance(address,uint256)._spender
(UsdPlusToken.sol#1616) is not in mixedCase
Parameter UsdPlusToken.increaseAllowance(address,uint256)._addedValue
(UsdPlusToken.sol#1616) is not in mixedCase
Parameter UsdPlusToken.decreaseAllowance(address,uint256)._spender
(UsdPlusToken.sol#1628) is not in mixedCase
Parameter UsdPlusToken.decreaseAllowance(address,uint256)._subtractedValue
(UsdPlusToken.sol#1628) is not in mixedCase
Parameter UsdPlusToken.mint(address,uint256)._account (UsdPlusToken.sol#1639) is not in
mixedCase
Parameter UsdPlusToken.mint(address,uint256)._amount (UsdPlusToken.sol#1639) is not in
mixedCase
Parameter UsdPlusToken.rebaseOptIn(address)._address (UsdPlusToken.sol#1714) is not in
mixedCase
Parameter UsdPlusToken.rebaseOptOut(address)._address (UsdPlusToken.sol#1734) is not in
mixedCase
Parameter UsdPlusToken.changeSupply(uint256)._newTotalSupply (UsdPlusToken.sol#1747) is
not in mixedCase
Variable UsdPlusToken.DELETED_1 (UsdPlusToken.sol#1289) is not in mixedCase
Variable UsdPlusToken.DELETED_2 (UsdPlusToken.sol#1290) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
UsdPlusToken (UsdPlusToken.sol#1263-1842) does not implement functions:

- IERC20MetadataUpgradeable.name() (UsdPlusToken.sol#929)

- IERC20MetadataUpgradeable.symbol() (UsdPlusToken.sol#931)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unimplemented-functions
INFO:Detectors:
UsdPlusToken.DELETED_1 (UsdPlusToken.sol#1289) is never used in UsdPlusToken
(UsdPlusToken.sol#1263-1842)
UsdPlusToken.DELETED_2 (UsdPlusToken.sol#1290) is never used in UsdPlusToken
(UsdPlusToken.sol#1263-1842)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variable
INFO:Detectors:
UsdPlusToken.DELETED_1 (UsdPlusToken.sol#1289) should be constant
UsdPlusToken.DELETED_2 (UsdPlusToken.sol#1290) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Detectors:
The function UsdPlusToken.totalSupplyOwners() (UsdPlusToken.sol#1426-1436) reads total +=
this.balanceOf(_owners.at(index)) (UsdPlusToken.sol#1432) with `this` which adds an extra
STATICCALL.
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#public-variable-read-in-external-co
ntext
INFO:Slither:UsdPlusToken.sol analyzed (23 contracts with 93 detectors), 172 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

UsdPlusToken.sol

Gas costs:
Gas requirement of function UsdPlusToken.pause is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 473:4:

Gas costs:
Gas requirement of function UsdPlusToken.unpause is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 477:4:

This on local calls:
Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes more gas than normal local calls.
Pos: 534:21:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 1066:8:

Similar variable names:
UsdPlusToken.creditToAsset(address,uint256) : Variables have very similar names "_owners" and
"owner". Note: Modifiers are currently not considered by this static analysis.
Pos: 687:74:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 1059:8:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 995:8:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

UsdPlusToken.sol

Compiler version >=0.8.0 <0.9.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:1
global import of path @openzeppelin/contracts/utils/structs/EnumerableSet.sol is not allowed.
Specify names to import individually or bind all exports of the module into a name (import "path"
as Name)
Pos: 1:3
global import of path
@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol is not allowed.
Specify names to import individually or bind all exports of the module into a name (import "path"
as Name)
Pos: 1:4
global import of path
@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.s
ol is not allowed. Specify names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:5
global import of path @openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol is not
allowed. Specify names to import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:6
global import of path
@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol is not allowed.
Specify names to import individually or bind all exports of the module into a name (import "path"
as Name)
Pos: 1:7
global import of path @openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol is
not allowed. Specify names to import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:8
Constant name must be in capitalized SNAKE_CASE
Pos: 5:26
Constant name must be in capitalized SNAKE_CASE
Pos: 5:29
Error message for require is too long
Pos: 9:72
Error message for require is too long

Pos: 9:88
Error message for require is too long
Pos: 9:102
Error message for require is too long
Pos: 9:118
Error message for require is too long
Pos: 9:141
Error message for require is too long
Pos: 9:155
Error message for require is too long
Pos: 9:170
Error message for require is too long
Pos: 9:184
Error message for require is too long
Pos: 9:199
Contract has 20 states declarations but allowed no more than 15
Pos: 1:333
Variable name must be in mixedCase
Pos: 5:359
Variable name must be in mixedCase
Pos: 5:360
Explicitly mark visibility of state
Pos: 5:370
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:400
Visibility modifier must be first in list of modifiers
Pos: 99:405
Code contains empty blocks
Pos: 5:423
Use double quotes for string literals
Pos: 43:454
Use double quotes for string literals
Pos: 47:460
Use double quotes for string literals
Pos: 45:466
Use double quotes for string literals
Pos: 50:1033
Code contains empty blocks
Pos: 16:1086

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

