
Project: agEUR (agEUR)
Website: angle.money
Platform: Base Chain Network
Language: Solidity
Date: June 15th, 2024

https://angle.money/

Table of contents
Introduction ………………………………………………………………………………………..4

Project Background ……………………………………………………………………………….4

Audit Scope ………………………………………………………………………………………..5

Code Audit History ………………………………………………………………………………..6

Severity Definitions ……………………………………………………………………………....6

Claimed Smart Contract Features …………………………………………………………….. .7

Audit Summary ……………....…………………………………………………………………...8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………. 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 24

● Solhint Linter …………………………………………………………………….……….. 26

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
As part of EtherAuthority’s community smart contracts audit initiatives, the agEUR smart
contract from angle.money was audited extensively. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on June 15th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Website Details

Angle Protocol provides USDA and EURA stablecoins, offering transparency, stability, and

liquidity. Users can earn yield, buy, borrow, and trade these stablecoins, which are fully

collateralized and audited for security. The platform supports seamless asset swaps,

onchain forex, and integration with various DeFi projects. Angle Protocol operates as a

DAO, governed by ANGLE token holders.

Code Details
● The `AgTokenSideChainMultiBridgeNameable` contract extends the

`AgTokenSideChainMultiBridge` contract, allowing the token's name and symbol to

be updated dynamically by a governor.

● This contract is useful for updating the token's branding while maintaining the core

functionalities of `AgTokenSideChainMultiBridge`. Only authorized users

(governors) can update the name and symbol.

● This contract enables updating the token's name and symbol dynamically, inheriting

the core functionalities from `AgTokenSideChainMultiBridge`. It includes access

control to ensure that only authorized users (governors) can update these values.

This is particularly useful for managing token branding and identification

post-deployment.

Audit scope

Name Code Review and Security Analysis Report for
agEUR(agEUR) Smart Contract

Platform Base Chain Network

Language Solidity

File AgTokenSideChainMultiBridgeNameable.sol

Smart Contract Code 0xb5ecaa1a867feccd6d87604bc16a2b6b53d706bf

Audit Date June 15th,2024

Audit Result Passed

https://basescan.org/address/0xb5ecaa1a867feccd6d87604bc16a2b6b53d706bf#code

Code Audit History

Severity Definitions

0 Critical Critical vulnerabilities are usually
straightforward to exploit and can lead to
token loss etc.

0 High High-level vulnerabilities are difficult to
exploit; however, they also have
significant impact on smart contract
execution, e.g. Public access is crucial.

0 Medium Medium-level vulnerabilities are
important to fix; however, they can’t lead
to tokens lose

0 Low Low-level vulnerabilities are mostly related
to outdated, unused, etc. code snippets,
that can’t have a significant impact on
execution

0 Lowest /
Informational /
Best Practice

Lowest-level vulnerabilities, code style
violations, and info statements can’t affect
smart contract execution and can be
ignored.

0
Total

Findings

0
Critical

0
High

0
Medium

0
Low

0
Informational

Claimed Smart Contract Features
Claimed Feature Detail Our Observation

Governor Control:
● Updates the name and symbol of the token.

● Add/Remove support for a bridge token.

● Recovers any ERC20 token.

Governor Or Guardian Control:
● Updates the `limit` amount for `bridgeToken`.

● Updates the `hourly limit` amount for `bridgeToken`.

● Updates the `chainTotalHourlyLimit` amount.

● Updates the `fee` value for `bridgeToken`.

● Pauses or unpauses swapping in and out for a token.

● Toggles fees for the address `address`.

YES, This is valid.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Well Secured”.Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 0 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical nature of

the project. Any owner-controlled functions should be executed by the owner with responsibility.

All investors/users are advised to do their due diligence before investing in the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas

Optimization
“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? Yes

Is it a Proxy Contract? Yes

Is it used Open Source? No

External Call Risk? No

Balance Modifiable? No

Can Take Ownership? No

Ownership Renounce? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in agEUR are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties/methods can be reused many times by

other contracts in the agEUR.

The EtherAuthority team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an agEUR smart contract code in the form of a basescan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/address/0xb5ecaa1a867feccd6d87604bc16a2b6b53d706bf#code

AS-IS overview

AgTokenSideChainMultiBridgeNameable.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 setNameAndSymbol external access only

governor
No Issue

5 _swapLeverage internal Passed No Issue
6 onlyGovernor modifier Passed No Issue
7 onlyGovernorOrGuardian modifier Passed No Issue
8 allBridgeTokens external Passed No Issue
9 currentUsage external Passed No Issue
10 currentTotalUsage external Passed No Issue
11 swapIn external Passed No Issue
12 swapOut external Passed No Issue
13 addBridgeToken external access only

governor
No Issue

14 removeBridgeToken external access only
governor

No Issue

15 recoverERC20 external access only
governor

No Issue

16 setLimit external access only
governor

No Issue

17 setHourlyLimit external access only
Governor Or
Guardian

No Issue

18 setChainTotalHourlyLimit external access only
Governor Or
Guardian

No Issue

19 setSwapFee external access only
Governor Or
Guardian

No Issue

20 toggleBridge external access only
Governor Or
Guardian

No Issue

21 toggleFeesForAddress external access only
Governor Or
Guardian

No Issue

22 initialize external Passed No Issue
23 _initialize internal Passed No Issue
24 onlyTreasury modifier Passed No Issue
25 onlyMinter modifier Passed No Issue
26 burnStablecoin external Passed No Issue

27 burnSelf external access only
Minter

No Issue

28 burnFrom external access only
Minter

No Issue

29 mint external access only
Minter

No Issue

30 addMinter external access only
treasury

No Issue

31 removeMinter external Passed No Issue
32 setTreasury external access only

treasury
No Issue

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low
No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

No Very-Low severity vulnerabilities were found.

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet's private key would be compromised, then it would create trouble.

You are here

The following are owner functions:

AgTokenSideChainMultiBridgeNameable.sol
● setNameAndSymbol: Updates the name and symbol of the token only by the

Governor.

● addBridgeToken: Adds support for a bridge token only by the Governor.

● removeBridgeToken: Removes support for a token only by the Governor.

● recoverERC20: Recovers any ERC20 token only by the Governor.

● setLimit: Updates the `limit` amount for `bridgeToken` only by the Governor Or

Guardian.

● setHourlyLimit: Updates the `hourlyLimit` amount for `bridgeToken` only by the

Governor Or Guardian.

● setChainTotalHourlyLimit: Updates the `chainTotalHourlyLimit` amount only by the

Governor Or Guardian.

● setSwapFee: Updates the `fee` value for `bridgeToken` only by the Governor Or

Guardian.

● toggleBridge: Pauses or unpauses swapping in and out for a token only by the

Governor Or Guardian.

● toggleFeesForAddress: Toggles fees for the address `theAddress` only by the

Governor Or Guardian.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion
We were given a contract code in the form of a basescan web link. And we have used all

possible tests based on given objects as files. We observed no issues in the smart

contracts. So, it’s good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Well Secured”.

https://basescan.org/address/0xb5ecaa1a867feccd6d87604bc16a2b6b53d706bf#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - agEUR

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

AgTokenSideChainMultiBridgeNameable.sol

INFO:Detectors:
AgEUR.setTreasury(address)._treasury (AgTokenSideChainMultiBridgeNameable.sol#4955)
lacks a zero-check on :

- treasury = _treasury (AgTokenSideChainMultiBridgeNameable.sol#4956)
AgToken.setTreasury(address)._treasury (AgTokenSideChainMultiBridgeNameable.sol#5033)
lacks a zero-check on :

- treasury = _treasury (AgTokenSideChainMultiBridgeNameable.sol#5034)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Modifier TransparentUpgradeableProxy.ifAdmin()
(AgTokenSideChainMultiBridgeNameable.sol#6829-6835) does not always execute _; or
revertReference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-modifier
INFO:Detectors:
Reentrancy in AgTokenSideChainMultiBridge.swapIn(address,uint256,address)
(AgTokenSideChainMultiBridgeNameable.sol#5100-5125):

External calls:
- IERC20(bridgeToken).safeTransferFrom(msg.sender,address(this),amount)

(AgTokenSideChainMultiBridgeNameable.sol#5118)
State variables written after the call(s):
- _mint(to,canonicalOut) (AgTokenSideChainMultiBridgeNameable.sol#5123)

- _balances[account] += amount (AgTokenSideChainMultiBridgeNameable.sol#2246)
- _mint(to,canonicalOut) (AgTokenSideChainMultiBridgeNameable.sol#5123)

- _totalSupply += amount (AgTokenSideChainMultiBridgeNameable.sol#2245)
INFO:Detectors:
Reentrancy in AgTokenSideChainMultiBridge.recoverERC20(address,address,uint256)
(AgTokenSideChainMultiBridgeNameable.sol#5180-5183):

External calls:
- IERC20(tokenAddress).safeTransfer(to,amountToRecover)

(AgTokenSideChainMultiBridgeNameable.sol#5181)
Event emitted after the call(s):
- Recovered(tokenAddress,to,amountToRecover)

(AgTokenSideChainMultiBridgeNameable.sol#5182)

INFO:Detectors:
Pragma version^0.8.0 (AgTokenSideChainMultiBridgeNameable.sol#2) allows old versions
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Variable AgTokenSideChainMultiBridgeNameable.__name
(AgTokenSideChainMultiBridgeNameable.sol#8752) is not in mixedCase
Variable AgTokenSideChainMultiBridgeNameable.__symbol
(AgTokenSideChainMultiBridgeNameable.sol#8754) is not in mixedCase
Variable AgTokenSideChainMultiBridgeNameable.__gapNameable
(AgTokenSideChainMultiBridgeNameable.sol#8756) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
Variable OldVaultManagerStorage.xLiquidationBoost
(AgTokenSideChainMultiBridgeNameable.sol#6770) is too similar to
OldVaultManagerStorage.yLiquidationBoost
(AgTokenSideChainMultiBridgeNameable.sol#6771)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-too-similar
INFO:Detectors:
LayerZeroBridge.slitherConstructorConstantVariables()
(AgTokenSideChainMultiBridgeNameable.sol#7911-7994) uses literals with too many digits:

- EXTRA_GAS = 200000 (AgTokenSideChainMultiBridgeNameable.sol#5410)
LayerZeroBridgeToken.slitherConstructorConstantVariables()
(AgTokenSideChainMultiBridgeNameable.sol#8109-8213) uses literals with too many digits:

- EXTRA_GAS = 200000 (AgTokenSideChainMultiBridgeNameable.sol#5410)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
BaseOracleChainlinkOneFeed (AgTokenSideChainMultiBridgeNameable.sol#7765-7776) does
not implement functions:

- BaseOracleChainlinkMulti.circuitChainlink()
(AgTokenSideChainMultiBridgeNameable.sol#7740)
OracleSTEURETHChainlinkArbitrum (AgTokenSideChainMultiBridgeNameable.sol#7834-7908)
does not implement functions:

- AggregatorV3Interface.decimals() (AgTokenSideChainMultiBridgeNameable.sol#6-11)
- AggregatorV3Interface.description() (AgTokenSideChainMultiBridgeNameable.sol#13-18)
- AggregatorV3Interface.getRoundData(uint80)

(AgTokenSideChainMultiBridgeNameable.sol#27-38)
- AggregatorV3Interface.latestRoundData()

(AgTokenSideChainMultiBridgeNameable.sol#40-49)
- AggregatorV3Interface.version() (AgTokenSideChainMultiBridgeNameable.sol#20-25)

LayerZeroBridge (AgTokenSideChainMultiBridgeNameable.sol#7911-7994) does not implement
functions:

- IERC165.supportsInterface(bytes4) (AgTokenSideChainMultiBridgeNameable.sol#653)
LayerZeroBridgeToken (AgTokenSideChainMultiBridgeNameable.sol#8109-8213) does not
implement functions:

- IERC165.supportsInterface(bytes4) (AgTokenSideChainMultiBridgeNameable.sol#653)
OldLayerZeroBridgeToken (AgTokenSideChainMultiBridgeNameable.sol#8238-8342) does not
implement functions:

- IERC165.supportsInterface(bytes4) (AgTokenSideChainMultiBridgeNameable.sol#653)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unimplemented-functions
INFO:Detectors:
OwnableUpgradeable.__gap (AgTokenSideChainMultiBridgeNameable.sol#2404) is never used
in OwnableUpgradeable (AgTokenSideChainMultiBridgeNameable.sol#2363-2405)
KeeperRegistry.__gap (AgTokenSideChainMultiBridgeNameable.sol#3832) is never used in
KeeperRegistry (AgTokenSideChainMultiBridgeNameable.sol#3825-3861)
AgEURNameable.__gapNameable (AgTokenSideChainMultiBridgeNameable.sol#5556) is never
used in AgEURNameable (AgTokenSideChainMultiBridgeNameable.sol#5546-5570)
AgTokenNameable.__gapNameable (AgTokenSideChainMultiBridgeNameable.sol#5584) is
never used in AgTokenNameable (AgTokenSideChainMultiBridgeNameable.sol#5573-5598)
AgTokenSideChainMultiBridgeNameable.__gapNameable
(AgTokenSideChainMultiBridgeNameable.sol#8756) is never used in
AgTokenSideChainMultiBridgeNameable
(AgTokenSideChainMultiBridgeNameable.sol#8751-8770)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variable
INFO:Detectors:
AgEUR.stableMaster (AgTokenSideChainMultiBridgeNameable.sol#4895) should be constant
AgEUR.treasuryInitialized (AgTokenSideChainMultiBridgeNameable.sol#4902) should be
constant
Settlement.collateralStablecoinExchangeRate
(AgTokenSideChainMultiBridgeNameable.sol#3885) should be constant
Settlement.exchangeRateComputed (AgTokenSideChainMultiBridgeNameable.sol#3887) should
be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Detectors:
MockVaultManager.oracle (AgTokenSideChainMultiBridgeNameable.sol#3694) should be
immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-immutable
INFO:Slither:AgTokenSideChainMultiBridgeNameable.sol analyzed (162 contracts with 93
detectors), 749 result(s) found
INFO:Slither:AgTokenSideChainMultiBridgeNameable.sol analyzed (162 contracts with 93
detectors), 749 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

AgTokenSideChainMultiBridgeNameable.sol

Inline assembly:The Contract uses inline assembly, this is only advised in rare cases. Additionally
static analysis modules do not parse inline Assembly, this can lead to wrong analysis results.
Pos: 9003:12:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 8835:12:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 8994:46:

Gas costs:
Gas requirement of function MockSidechainAgEUR.removeBridgeToken is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)
Pos: 7681:4:

This on local calls:
Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes gas than normal local calls.
Pos: 6462:12:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 4513:8:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 6703:8:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 8966:8:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 8744:8:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 8948:40:

Solhint Linter

Linters are the utility tools that analyze the given source code and report programming

errors, bugs, and stylistic errors. For the Solidity language, there are some linter tools

available that a developer can use to improve the quality of their Solidity contracts.

AgTokenSideChainMultiBridgeNameable.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver requirement
Pos: 1:1
Function name must be in mixedCase
Pos: 5:89
9Error message for require is too long
Pos: 9:136
Error message for require is too long
Pos: 9:5857
Code contains empty blocks
Pos: 94:5863
Code contains empty blocks
Pos: 93:5865
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:5888
Code contains empty blocks
Pos: 31:8919
Avoid to use low level calls.
Pos: 47:8993
Avoid to use inline assembly. It is acceptable only in rare cases
Pos: 13:9002
Code contains empty blocks
Pos: 32:9018
Explicitly mark visibility in function (Set ignoreConstructors to true if using solidity >=0.7.0)
Pos: 5:9036
Code contains empty blocks
Pos: 60:9041

Software analysis result:
This software reported many false positive results and some were informational issues.

So, those issues can be safe

