
Project: Enfineo
Website: enfineo.com
Platform: Binance Smart Contract
Language: Solidity
Date: September 9th, 2024

http://enfineo.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 21

Our Methodology ………………………………………………………………………………... 22

Disclaimers ………………………………………………………………………………………. 24

Appendix

● Code Flow Diagram ……………………………………………………………………... 25

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 32

● Solhint Linter …………………………………………………………………….……….. 35

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Enfineo team to perform the Security audit of the
Enfineo smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on September 9th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● The Enfineo Contracts handle multiple contracts, and all contracts have different

functions.

○ enfineoToken: This contract has clear role-based access, making it more

secure and manageable, with controlled minting and burning operations.

○ enfineoStaking: This contract allows ENF token holders to stake their

tokens and earn rewards over time based on predefined deposit types. The

contract supports early withdrawals with penalties, and the reward pool is

managed by trusted roles. Security features such as pausing, role-based

access, and reentrancy protection are integrated for robust operation.

○ enfineoVesting: This Ethereum-based smart contract for a vesting system

using Solidity. The contract implements functionality related to creating,

managing, and claiming tokens within different vesting schedules. The code

involves handling vesting schedules for various groups such as "SEED,"

"EARLY_ADOPTERS," "PRIVATE," and others, each with defined periods

and percentages for token distribution. It effectively combines vesting and

staking features while ensuring token distribution happens gradually based

on predefined schedules.

● This audit scope has included 3 smart contract files, 2 interface files, and 2 struct

files.

● The Enfineo contracts inherit the AccessControl, ReentrancyGuard, Pausable,

Strings, IERC20, ERC20 standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Enfineo Smart Contracts

Platform Binance Smart Contract

Language Solidity

File 1 enfineoToken.sol

File 1 MD5 hash 1DB5A4E3642A2BE632E912F5F4D31494

File 2 enfineoStaking.sol

File 2 MD5 hash 102D957218F9E1D6034CCAC05F606427

Updated File 2 MD5 hash 7AAFD2E9D5B309B70DB003E1840C8DB5

File 3 enfineoVesting.sol

File 3 MD5 hash 7EC9B95ACDC49E14623E98AF7FBE5D06

Updated File 3 MD5 hash AF5F7E8FBFB9D8ED56DFF42AB158838F

File 4 IENF.sol

File 4 MD5 hash 9F69E9592A5C4555405C5B11B2C2DE74

Updated File 4 MD5 hash CD7D0DDF39415E2E5486996C846F66D6

File 5 IENFVesting.sol

File 5 MD5 hash EFA1A34906C7C8D05E2F639E874613E9

File 6 StakingStructs.sol

File 6 MD5 hash 3E45206D869F3A3548F9D695F214D4AD

File 7 VestingStructs.sol

File 7 MD5 hash 5A1F5F732C2A9BAEF820823F87513CD5

Audit Date September 9th, 2024

Revised Audit Date September 11th, 2024

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1: enfineoToken.sol
Tokenomics:

● Name: enfineo

● Symbol: ENF

● Decimals: 18

● Maximum Supply: 110 Million

Other Control:
● Mint new tokens by the minter.

YES, This is valid.

File 2: enfineoStaking.sol
Other Control:

● The Operational role can add/delete the reward pool.

● The Operational role can pause/unpause stake.

● The setters can set Enf Token.

● The setters can set the vesting contract address.

● Update/Add a deposit type by the Deposit type role.

YES, This is valid.

File 3: enfineoVesting.sol
Admin Control:

● Set the start time of the claim and stake.

● Set the start time of the vesting contract.

● Set the token address.

● Set the stake contract address.

YES, This is valid.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 1 high, 0 medium, 3 low, and 6 very low-level issues.
We confirm that all issues are fixed/Acknowledged in the revised smart contract
code.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? Yes

Is it a Proxy? No

Can Take Ownership? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has included 3 smart contract files, 2 interface files, and 2 struct files.

Smart contracts contain Libraries, Smart contracts, inherits, and Interfaces. This is a

compact and well-written smart contract.

The libraries in Enfineo are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties/methods can be reused many times by

other contracts in the Enfineo.

The Enfineo team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an Enfineo smart contract code in the form of a file. The hash of that code

is mentioned in the table above.

As mentioned above, code parts are well-commented. and the logic is straightforward. So
it is easy to quickly understand the programming flow as well as the complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contracts infrastructure are based

on well-known industry-standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

enfineoToken.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 mint external Role of Mint No Issue
3 burn external Role of BURNER Acknowledged
4 name read Passed No Issue
5 symbol read Passed No Issue
6 decimals read Passed No Issue
7 totalSupply read Passed No Issue
8 balanceOf read Passed No Issue
9 transfer write Passed No Issue
10 allowance read Passed No Issue
13 approve write Passed No Issue
14 transferFrom write Passed No Issue
15 _transfer internal Passed No Issue
16 _update internal Passed No Issue
17 _mint internal Passed No Issue
18 _burn internal Passed No Issue
19 _approve internal Passed No Issue
20 _approve internal Passed No Issue
21 _spendAllowance internal Passed No Issue
22 onlyRole modifier Passed No Issue
23 supportsInterface read Passed No Issue
24 hasRole read Passed No Issue
25 _checkRole internal Passed No Issue
26 _checkRole internal Passed No Issue
27 getRoleAdmin read Passed No Issue
28 grantRole write Role of Admin No Issue
29 revokeRole write Passed No Issue
30 renounceRole write Role of Admin No Issue
31 _setRoleAdmin internal Passed No Issue
32 _grantRole internal Passed No Issue
33 _revokeRole internal Passed No Issue

enfineoStaking.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 stake external Passed No Issue
3 unstake write Passed No Issue
4 updateRewardPool write Passed No Issue

5 addRewardToPool external Role of Operational No Issue
6 removeRewardFromPool external Role of Operational No Issue
7 pauseStake external Role of Operational No Issue
8 unpauseStake external Role of Operational No Issue
9 setEnfToken external Role of Setter No Issue
10 setVestingContractAddress external Role of Setter No Issue
13 updateDepositsType external Passed Fixed
14 getEnfToken external Passed No Issue
15 getVestingContractAddress external Passed No Issue
16 getDepositTypes external Passed No Issue
17 getDepositsNumberPerOwne

r
external Passed No Issue

18 getDepositsByOwner external Passed No Issue
19 getRewardPoolAmount external Passed No Issue
20 getRewardOnADepositType read Passed No Issue
21 nonReentrant modifier Passed No Issue
22 _nonReentrantBefore write Passed No Issue
23 _nonReentrantAfter write Passed No Issue
24 _reentrancyGuardEntered internal Passed No Issue
25 onlyRole modifier Passed No Issue
26 supportsInterface read Passed No Issue
27 hasRole read Passed No Issue
28 _checkRole internal Passed No Issue
29 _checkRole internal Passed No Issue
30 getRoleAdmin read Passed No Issue
31 grantRole write Role of Admin No Issue
32 revokeRole write Passed No Issue
33 renounceRole write Role of Admin No Issue
34 _setRoleAdmin internal Passed No Issue
35 _grantRole internal Passed No Issue
36 _revokeRole internal Passed No Issue
37 when not paused modifier Passed No Issue
38 whenPaused modifier Passed No Issue
39 paused read Passed No Issue
40 _requireNotPaused internal Passed No Issue
41 _requirePaused internal Passed No Issue
42 _pause internal Passed No Issue
43 _unpause internal Passed No Issue

enfineoVesting.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed Fixed
2 createVestingSchedule write Passed No Issue
3 createVestingSchedules external Passed Acknowledged
4 claimTokens external Passed No Issue

5 claimAndStakeTokens external Passed No Issue
6 calculateTgeAmount read Passed No Issue
7 setVestingContractClaimAnd

StakeStartingDate
external Role of Admin No Issue

8 getVestingContractClaimAnd
StakeStartingDate

external Passed No Issue

9 setVestingContractStartingDa
te

external Role of Admin No Issue

10 getVestingContractStartingDa
te

external Passed No Issue

13 computeVestingIdForAddress
AndVestingName

write Passed No Issue

14 getAddressVestingSchedules
Ids

read Passed No Issue

15 getVestingById external Passed No Issue
16 getAddressVestingsCount external Passed No Issue
17 getEnfTokenAddress external Passed No Issue
18 getStakingContractAddress external Passed No Issue
19 setEnfToken external Role of Admin No Issue
20 setStakeContractAddress external Role of Admin No Issue
21 getVestingPeriodsDetailsByV

estingId
external Passed No Issue

22 getEndOfVestingByVestingId external Passed No Issue
23 setVestingScheduleEnableSt

atus
external Passed Acknowledged

24 onlyRole modifier Passed No Issue
25 supportsInterface read Passed No Issue
26 hasRole read Passed No Issue
27 _checkRole internal Passed No Issue
28 _checkRole internal Passed No Issue
29 getRoleAdmin read Passed No Issue
30 grantRole write Role of Admin No Issue
31 revokeRole write Passed No Issue
32 renounceRole write Role of Admin No Issue
33 _setRoleAdmin internal Passed No Issue
34 _grantRole internal Passed No Issue
35 _revokeRole internal Passed No Issue
36 nonReentrant modifier Passed No Issue
37 _nonReentrantBefore write Passed No Issue
38 _nonReentrantAfter write Passed No Issue
39 _reentrancyGuardEntered internal Passed No Issue
40 getVestingPeriodCurrentAlloc

atedAmount
external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix; however,
they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) BURNER can burn anyone’s token: enfineoToken.sol
BURNER can burn any user’s tokens.

Resolution: We suggest changing the code so only token holders can burn their own

tokens and not anyone else. Not even a contract creator.

Status: Fixed.

Medium

No Medium-severity vulnerabilities were found.

Low

(1) Infinite loops possibility: enfineoVesting.sol
As the number of array elements increases, it will cost more and more gas. And

eventually, it will stop all the functionality. After several hundreds of transactions, all those

functions depending on it will stop. We suggest avoiding loops. For example, use mapping

to store the array index. And query that data directly, instead of looping through all the

elements to find an element.

Resolution: Adjust logic to replace loops with mapping or other code structures.
● setVestingScheduleEnableStatus() - vestingScheduleIds.length

● createVestingSchedules() - beneficiaries.length

Status: Acknowledged. The client has confirmed that the length will not be greater than

100.

(2) Staking Contract Burner Role Setup: enfineoToken.sol
To enable the staking contract to burn tokens, it needs to be assigned the

BURNER_ROLE in the token contract. Without this role, unstake will revert.

Resolution: The token contract owner should grant the BURNER_ROLE to the staking

contract. This can be done using the token contract's role management functions to ensure

not reverting the unstaking process.

Status: Acknowledged.

(3) Undeclared identifier: enfineoToken.sol

The _account variable and the _amount variables are used to log a burn event but not

defined in the function.

Resolution: We suggest changing the variable names and using the correct variables in

the event log.

Status: Fixed.

Very Low / Informational / Best practices:

(1) Variable Initialization: enfineoVesting.sol

Always initialize variables to avoid unexpected behavior or logical errors. Uninitialized

variables may lead to unpredictable results and security issues.

Resolution: Initialize variables with a default value, e.g., uint256 i = 0;. This practice

ensures variables start with a known value, improving code reliability and security.

Status: Fixed.

(2) Unused error and event:

enfineoVesting.sol
Errors are defined but not used in code.

● InvalidReleasedAmount

● InvalidDepositType

Events are defined but not used in code.

● StakeContractAccess

enfineoStaking.sol
Errors are defined but not used in code.

● DepositIsNotMature

● Unauthorized

● DepositAlreadyUstaked

● CoolingDeposit

● NotEnoughTokens

● InvalidAmountToUpdateRewardPool

Events are defined but not used in code.

● Claim

● SetPenalty

Resolution:We suggest removing unused errors and events.

Status: Fixed.

(3) Spelling mistake:

enfineoVesting.sol

Spelling mistake in constructor comments.

“alocated” should be “allocated”.

“accesible” should be “accessible”.

enfineStaking.sol

“unstaed” should be “unstaked”.
Resolution: Correct the spelling.
Status: Fixed.

(4) Magic Numbers defined: enfineoVesting.sol

Magic numbers like 999, 0, and 1 reduce code readability and increase the risk of errors.

They make the code harder to understand and maintain.

Resolution: Define these values as constants or enumerations with descriptive names,

e.g., uint256 constant STAKE_TYPE_POOL1 = 0; This improves code clarity and

maintainability, making it easier to understand and modify.

Status: Fixed.

(5) Correct Grammar in Condition Description: enfineoStaking.sol

The current text incorrectly uses "than" instead of "then" in the condition description.

The intended meaning is to describe a conditional action.

Resolution: Change "than" to "then" to accurately reflect the conditional nature of the

statement. The corrected line should read: "Index or, if it is greater than the current length,

then a new deposit is created."

Status: Fixed.

(6) Typographical Error in Parameter Description: enfineoStaking.sol

The current text contains a typographical error with the misspelling of "annual" as "anual."

This affects the clarity of the parameter description.

Resolution: Correct the spelling of "anual" to "annual" to accurately describe the

parameter. The revised line should read @param apr Annual percentage rate.

Status: Fixed.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

enfineoVesting.sol
● setVestingContractStartingDate: Sets the start time of the vesting contract by the

admin.

● setEnfToken: Sets the token address by the admin.

● setStakeContractAddress: Sets the stake contract address by the admin.

AccessControl.sol
● grantRole: Grants `role` to `account` can be set by the admin.

● revokeRole: Revokes `role` from `account` by the admin.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We observed 1 high, 3 low, and 6 Informational issues in

the smart contracts. We confirm that all issues are fixed/Acknowledged in the revised

smart contract code. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of the functionality of the software under review. We then meet with the developers to gain

an appreciation of their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm threat models

and attack surfaces. We read design documentation, review other audit results, search for

similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status or any
other statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report only. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix

Code Flow Diagram - Enfineo

enfineoToken Diagram

enfineoStaking Diagram

enfineoVesting Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.

Slither Log >> enfineoToken.sol

INFO:Detectors:
Pragma version^0.8.25 (enfineoToken.sol#2) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter ENF.burn(address,uint256)._account (enfineoToken.sol#684) is not in mixedCase
Parameter ENF.burn(address,uint256)._amount (enfineoToken.sol#684) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:enfineoToken.sol analyzed (12 contracts with 93 detectors), 7 result(s) found

Slither Log >> enfineoStaking.sol

INFO:Detectors:
ENFStaking.removeRewardFromPool(address,uint256) (enfineoStaking.sol#728-735) ignores
return value by _enfToken.transfer(to,amount) (enfineoStaking.sol#733)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer
INFO:Detectors:
ENFStaking.getDepositsByOwner(address,uint256,uint256).step (enfineoStaking.sol#863) is a
local variable never initialized
ENFStaking.getDepositsByOwner(address,uint256,uint256).depositNumber
(enfineoStaking.sol#862) is a local variable never initialized
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-local-variables
INFO:Detectors:
Reentrancy in ENFStaking.removeRewardFromPool(address,uint256)
(enfineoStaking.sol#728-735):

External calls:
- _enfToken.transfer(to,amount) (enfineoStaking.sol#733)
Event emitted after the call(s):
- RewardRemovedFromPool(address(_enfToken),to,amount) (enfineoStaking.sol#734)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
ENFStaking.stake(uint256,uint256,address) (enfineoStaking.sol#574-656) uses timestamp for
comparisons

Dangerous comparisons:
- block.timestamp + selectedDepositType.duration > type()(uint40).max

(enfineoStaking.sol#614)
ENFStaking.unstake(uint256) (enfineoStaking.sol#662-704) uses timestamp for comparisons

Dangerous comparisons:
- currentDeposit.maturityTimestamp <= block.timestamp (enfineoStaking.sol#670)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Pragma version^0.8.20 (enfineoStaking.sol#2) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Redundant expression "startIndex (enfineoStaking.sol#866)" inENFStaking
(enfineoStaking.sol#542-927)
Redundant expression "step (enfineoStaking.sol#876)" inENFStaking
(enfineoStaking.sol#542-927)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Slither:enfineoStaking.sol analyzed (10 contracts with 93 detectors), 20 result(s) found

Slither Log >> enfineoVesting.sol

INFO:Detectors:
Reentrancy in ENFVesting.claimAndStakeTokens(bytes32) (enfineoVesting.sol#640-705):

External calls:
- success = _enfToken.transfer(_stakeContractAddress,tgeAmount) (enfineoVesting.sol#680)
- externalContract.stake(tgeAmount,stakeTypeId,vest.beneficiary)

(enfineoVesting.sol#688-699)
State variables written after the call(s):
- vest.stakedAmount = vest.stakedAmount - tgeAmount (enfineoVesting.sol#691)
ENFVesting._vestings (enfineoVesting.sol#467) can be used in cross function reentrancies:
- ENFVesting.calculateTgeAmount(bytes32) (enfineoVesting.sol#760-765)
- ENFVesting.createVestingSchedule(address,string,uint256) (enfineoVesting.sol#537-568)
- ENFVesting.getEndOfVestingByVestingId(bytes32) (enfineoVesting.sol#880-890)
- ENFVesting.getReleaseAmount(bytes32) (enfineoVesting.sol#711-751)
- ENFVesting.getVestingById(bytes32) (enfineoVesting.sol#836-838)
- ENFVesting.getVestingPeriodsDetailsByVestingId(bytes32) (enfineoVesting.sol#874-878)

- ENFVesting.setVestingScheduleEnableStatus(bytes32[],bool[])
(enfineoVesting.sol#897-912)

- vest.stakedAmount = vest.stakedAmount - tgeAmount (enfineoVesting.sol#695)
ENFVesting._vestings (enfineoVesting.sol#467) can be used in cross function reentrancies:
- ENFVesting.calculateTgeAmount(bytes32) (enfineoVesting.sol#760-765)
- ENFVesting.createVestingSchedule(address,string,uint256) (enfineoVesting.sol#537-568)
- ENFVesting.getEndOfVestingByVestingId(bytes32) (enfineoVesting.sol#880-890)
- ENFVesting.getReleaseAmount(bytes32) (enfineoVesting.sol#711-751)
- ENFVesting.getVestingById(bytes32) (enfineoVesting.sol#836-838)
- ENFVesting.getVestingPeriodsDetailsByVestingId(bytes32) (enfineoVesting.sol#874-878)
- ENFVesting.setVestingScheduleEnableStatus(bytes32[],bool[])

(enfineoVesting.sol#897-912)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
ENFVesting.setVestingScheduleEnableStatus(bytes32[],bool[]).i (enfineoVesting.sol#901) is a
local variable never initialized
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-local-variables
INFO:Detectors:
ENFVesting.setStakeContractAddress(address).stakeAddress (enfineoVesting.sol#868) lacks a
zero-check on :

- _stakeContractAddress = stakeAddress (enfineoVesting.sol#869)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
ENFVesting.claimTokens(bytes32) (enfineoVesting.sol#596-634) uses timestamp for
comparisons

Dangerous comparisons:
- vest.releasedAmount > vest.vestedAmount (enfineoVesting.sol#618)
- releaseToSend > 0 (enfineoVesting.sol#623)

ENFVesting.claimAndStakeTokens(bytes32) (enfineoVesting.sol#640-705) uses timestamp for
comparisons

Dangerous comparisons:
- currentTime < _vestingContractClaimAndStakeStartingDate || currentTime >=

_vestingContractStartingDate + 2592000 (enfineoVesting.sol#661)
- currentTime >= _vestingContractClaimAndStakeStartingDate && currentTime <

_vestingContractStartingDate (enfineoVesting.sol#665)
- currentTime >= _vestingContractStartingDate && currentTime <

_vestingContractStartingDate + 2592000 (enfineoVesting.sol#669)
ENFVesting.getReleaseAmount(bytes32) (enfineoVesting.sol#711-751) uses timestamp for
comparisons

Dangerous comparisons:
- currentTime < _vestingContractStartingDate (enfineoVesting.sol#716)
- tempTime + vestingDefinitions.vestingPeriods[i] <= currentTime (enfineoVesting.sol#737)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
ENFVesting.claimAndStakeTokens(bytes32) (enfineoVesting.sol#640-705) has a high cyclomatic
complexity (13).

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#cyclomatic-complexity
INFO:Detectors:
Pragma version0.8.25 (enfineoVesting.sol#2) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.25 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Redundant expression "i (enfineoVesting.sol#586)" inENFVesting (enfineoVesting.sol#459-934)
Redundant expression "i (enfineoVesting.sol#825)" inENFVesting (enfineoVesting.sol#459-934)
Redundant expression "i (enfineoVesting.sol#902)" inENFVesting (enfineoVesting.sol#459-934)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Detectors:
ENFVesting.constructor() (enfineoVesting.sol#474-527) uses literals with too many digits:

- _vestingTokens[MARKETING] = VestingTokensStruct(6000000 * 10 ** 18,0)
(enfineoVesting.sol#526)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Slither:enfineoVesting.sol analyzed (9 contracts with 93 detectors), 28 result(s) found

Solidity Static Analysis
enfineoToken.sol

Gas costs:
Gas requirement of function ENF.mint is infinite: If the gas requirement of a function is higher than
the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 22:4:

Gas costs:
Gas requirement of function ENF.burn is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 31:4:

Similar variable names:
ENF.burn(address,uint256) : Variables have very similar names "_account" and "_amount". Note:
Modifiers are currently not considered by this static analysis.
Pos: 32:14:

enfineoStaking.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
ENFStaking.removeRewardFromPool(address,uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
Pos: 201:4:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 143:48:

Gas costs:
Gas requirement of function ENFStaking.updateDepositsType is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 248:4:

Constant/View/Pure functions:

ENFStaking.getRewardOnADepositType(uint256,uint256) : Is constant but potentially should not
be. Note: Modifiers are currently not considered by this static analysis.
Pos: 360:4:

No return:
IENF.balanceOf(address): Defines a return type but never explicitly returns a value.
Pos: 9:4:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 157:11:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 365:15:

enfineoToken.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
ENFVesting.claimAndStakeTokens(bytes32): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.
Pos: 217:5:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 292:30:

Gas costs:
Gas requirement of function ENFVesting.setVestingContractClaimAndStakeStartingDate is
infinite: If the gas requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)
Pos: 348:4:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 160:8:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 479:8:

Constant/View/Pure functions:
ENFVesting.computeVestingIdForAddressAndVestingName(address,string) : Is constant but
potentially should not be. Note: Modifiers are currently not considered by this static analysis.
Pos: 388:4:

Similar variable names:
ENFVesting.getReleaseAmount(bytes32) : Variables have very similar names "vestingSchedule"
and "vestingScheduleId". Note: Modifiers are currently not considered by this static analysis.
Pos: 315:37:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 320:37:

Solhint Linter

enfineoToken.sol

Compiler version ^0.8.25 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path @openzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:3
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:4
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:15

enfineoToken.sol

Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:3
global import of path
@openzeppelin/contracts/utils/ReentrancyGuard.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:4
global import of path @openzeppelin/contracts/utils/Pausable.sol is
not allowed. Specify names to import individually or bind all exports
of the module into a name (import "path" as Name)
Pos: 1:5
global import of path ./IENF.sol is not allowed. Specify names to
import individually or bind all exports of the module into a name
(import "path" as Name)
Pos: 1:7
global import of path StakingStructs.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:8
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:32
Avoid making time-based decisions in your business logic
Pos: 13:86
Avoid making time-based decisions in your business logic
Pos: 36:97
Avoid making time-based decisions in your business logic
Pos: 39:98
Avoid making time-based decisions in your business logic
Pos: 20:121
Avoid making time-based decisions in your business logic
Pos: 20:122
Avoid making time-based decisions in your business logic
Pos: 49:142

enfineoToken.sol

Compiler version 0.8.25 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path @openzeppelin/contracts/token/ERC20/IERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:3
global import of path
@openzeppelin/contracts/access/AccessControl.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:4
global import of path
@openzeppelin/contracts/utils/ReentrancyGuard.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:5
global import of path VestingStructs.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:6
Explicitly mark visibility of state
Pos: 5:41
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:50
Avoid making time-based decisions in your business logic
Pos: 31:234
Avoid making time-based decisions in your business logic
Pos: 31:291

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

