
Project: OmniTensor
Website: omnitensor.io
Platform: Ethereum
Language: Solidity
Date: December 10th, 2024

https://omnitensor.io/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Business Risk Analysis …..…………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions …………………………………-…………………………………………...13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 25

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by OmniTensor to perform the Security audit of the
OmniTensor smart contract code. The audit was performed using manual analysis and
automated software tools. This report presents all the findings regarding the audit
performed on December 10th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
This Solidity code defines a smart contract named `OmniTensor`, which implements the

ERC20 token standard with additional functionalities, including owner-based controls,

token trading via Uniswap, and tax mechanisms. Here is an overview of its components:

Key Features:
● ERC20 Token Basics:

○ The contract implements the standard ERC20 interface (`IERC20`), providing

methods such as `balanceOf`, `transfer`, `approve`, and `transferFrom`.

○ The token is named "OmniTensor" (`OMNIT`) with 18 decimals and a total

supply of 1 billion tokens.

● Ownership Control: The `Ownable` contract provides functionality for managing

ownership, including transferring ownership or renouncing it. The owner has

exclusive rights to modify certain contract behavior.

● Uniswap Integration:
○ The contract interacts with the Uniswap V2 protocol via `IUniswapV2Factory`

and `IUniswapV2Router02` interfaces. It allows adding liquidity in ETH and

enables token swaps through the DEX.

○ The `startTrading` function activates trading by creating a Uniswap pair and

adding liquidity.

● Taxation Mechanism:
○ A buy/sell fee (initially set to 5%) is applied to transactions involving

Uniswap. The tax amount is deducted from transfers, except for addresses

that are marked as excluded.

○ The contract collects the tax in tokens, which can later be swapped for ETH

and distributed to various wallets (`OmegaWallet`, `GammaWallet`,

`BetaWallet`, `AlphaWallet`).

● Limits and Controls:
○ The contract enforces limits on transaction size (`maxTxValue`) and wallet

holdings (`maxWalletHoldings`).

○ Trading can be paused and started by the owner. Additionally, the contract

provides the ability to remove transaction and wallet limits.

● Emergency Functions:
○ The owner can withdraw accumulated ETH or recover any remaining tokens

in the contract.

○ Manual token swaps for ETH can also be triggered by the owner.

This contract is designed with a flexible fee structure, controlled trading features, and

strong ownership functionality, making it well-suited for projects aiming to integrate liquidity

and token swapping through Uniswap.

Audit scope

Name Code Review and Security Analysis Report for
OmniTensor Smart Contract

Platform Ethereum / Solidity

File OmniTensor.sol

Smart Contract Link 0x6f2ee0e1ebfa00015d3040760f6c039f46b6c662

Audit Date December 10th, 2024

Revised Audit Date December 20th, 2024

https://etherscan.io/address/0x6f2ee0e1ebfa00015d3040760f6c039f46b6c662#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: OmniTensor

● Symbol: OMNIT

● Decimals: 18

● Total Supply: 1 billion

YES, This is valid.

Transaction Limits:

● Maximum transaction value: 1 billion tokens.

● Maximum wallet holdings: 1 billion tokens.

YES, This is valid.

Tax and Fee Mechanism:

● Buy and sell transactions are subject to a 5% fee

by default.

● Taxes collected from transactions are converted

to ETH, which is distributed to the designated

wallets: OmegaWallet, GammaWallet,

BetaWallet, and AlphaWallet.

YES, This is valid.

Audit Summary
According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. The OmniTensor smart contract is 100% decentralized, as it
renounces ownership, making it ownerless.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 3 low, and 5 very low-level issues.
We confirm that all the issues are acknowledged.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 5%

Sell Tax 5%

Cannot Buy No

Cannot Sell No

Max Tax 5%

Modify Tax Yes

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Transaction amount? Yes

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the OmniTensor are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the OmniTensor.

The OmniTensor team has not provided scenario and unit test scripts, which would help to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given an OmniTensor smart contract code in the form of an etherscan.io weblink.

As mentioned above, the code parts are well commented on. And the logic is

straightforward. So, it is easy to understand the programming flow and complex code logic

quickly. Comments are very helpful in understanding the overall architecture of the

protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/address/0x6f2ee0e1ebfa00015d3040760f6c039f46b6c662#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Hardcoded addresses Refer Audit

Findings
2 name write Passed No Issue
3 symbol write Passed No Issue
4 decimals write Passed No Issue
5 totalSupply write Passed No Issue
6 getFeeRates external Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue
10 approve write Passed No Issue
11 transfer from write Passed No Issue
12 _setAllowance write Passed No Issue
13 startTrading external Centralization risk,

Hardcoded addresses,
The startTrading needs
the Coin and token
balance of the token

contract

Refer Audit
Findings

14 setExcludedAccount external Renounces ownership,
making the contract

ownerless

No Issue

15 disableLimits external Critical operation lacks
an event log, Limits

cannot be enabled once
disabled

Refer Audit
Findings

16 adjustTaxRates external Critical operation lacks
event log

Refer Audit
Findings

17 _executeTokenTransfer write Passed No Issue
18 _executeTransfer write Passed No Issue
19 withdrawEth external Critical operation lacks

an event log, The owner
can withdraw all the coin
and token balance of the
contract, Transfer 0 coin

Refer Audit
Findings

20 recoverTokens external Critical operation lacks
an event log, The owner
can withdraw all the coin
and token balance of the

contract

Refer Audit
Findings

21 executeManualSwap external Critical operation lacks
event log

Refer Audit
Findings

22 _exchangeTokensForEth write Passed No Issue

23 receive write Passed No Issue
24 owner read Passed No Issue
25 onlyOwner modifier Passed No Issue
26 transferOwnership write Renounces ownership,

making the contract
ownerless

No Issue

27 _updateOwnership internal Passed No Issue
28 renounceOwnership write Renounces ownership,

making the contract
ownerless

No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

(1) Centralization risk:

/**

* Starts trading by setting up Uniswap pair and enabling

liquidity.

*/

function startTrading() external onlyOwner {

require(!_isTradingActive, "Trading is already enabled");

_uniswapV2Router =

IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);

uniswapV2Pair =

IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this),

_uniswapV2Router.WETH());

_setAllowance(address(this), address(_uniswapV2Router),

_totalSupply);

_uniswapV2Router.addLiquidityETH{value: address(this).balance}(

address(this),

balanceOf(address(this)),

0,

0,

owner(),

block.timestamp

);

IERC20(uniswapV2Pair).approve(address(_uniswapV2Router),

type(uint).max);

_isTradingActive = true;

_launchBlock = block.number;

}

When trading starts, added liquidity will be transferred to the Owner's wallet. If the private

key of the owner's wallet is compromised, then it will create a problem.

Resolution: The owner can accept this risk and handle the private key very securely.

Status: Acknowledged

(2) Critical operation lacks event log:

Some events do not have a log which can lead to tracking issues of the variable update.

Events are:
● withdrawEth

● recoverTokens

● executeManualSwap

● adjustTaxRates

● disableLimits

Resolution: We suggest adding an event log will help to track the methods and some

variables' state.

Status: Acknowledged

(3) The owner can withdraw all the coin and token balance of the contract:

/**

* Withdraws ETH from the contract.

*/

function withdrawEth() external onlyOwner {

(bool success,) = owner().call{value:

address(this).balance}("");

require(success, "Rescue ETH failed");

}

/**

* Transfers the remaining tokens in the contract to the owner.

*/

function recoverTokens() external onlyOwner {

uint256 contractTokenBalance = balanceOf(address(this));

require(contractTokenBalance > 0, "No tokens to rescue");

_executeTokenTransfer(address(this), owner(),

contractTokenBalance, 0);

}

The owner can drain all the coin and token balance of the contract. If the private key of the

owner's wallet is compromised, then it will create a problem.

Resolution: The owner can accept this risk and handle the private key very securely.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Transfer 0 coin:

/**

* Withdraws ETH from the contract.

*/

function withdrawEth() external onlyOwner {

(bool success,) = owner().call{value:

address(this).balance}("");

require(success, "Rescue ETH failed");

}

In the withdrawEth function, there is no check for the contract balance. This can execute a

transaction to transfer even for 0 coins which is just a waste of gas.

Resolution:We suggest checking the contract balance before transfer to the owner.

Status: Acknowledged

(2) Hardcoded addresses:

/**

* Constructor initializes wallets and assigns the total token

supply to the contract deployer.

*/

constructor() {

OmegaWallet = 0x38106d5664EfAf7aD02E3e5169b1F79591aFc71D; //

must change > Reserve

GammaWallet = 0xBd92bF5d4f7d1E4E8f3B3E99F99738B9aEEfCC55;

BetaWallet = 0x38106d5664EfAf7aD02E3e5169b1F79591aFc71D; //

must change > BB

AlphaWallet = 0x2F6D0A6B2bC5e219eb9a288F63048b911648B9Aa;

For routers and some wallets, a hardcoded address is used which cannot be changeable.

Resolution:We suggest confirming these addresses before deployment.

Status: Acknowledged

(3) Variables can be immutable:

address OmegaWallet; // Wallet for specific allocation

address GammaWallet;

address BetaWallet;

address AlphaWallet;

Variables that are defined within the constructor but further remain unchanged should be

marked as immutable to save gas and to ease the reviewing process of third-parties.

Resolution:We suggest defining them as Immutable to reduce some gas.

Status: Acknowledged

(4) Limits cannot be enabled once disabled:

/**

* Removes transaction and wallet holding limits.

*/

function disableLimits() external onlyOwner {

maxTxValue = _totalSupply;

maxWalletHoldings = _totalSupply;

}

A limit for maxTxValue and maxWalletHoldings once disabled then no option to enable it.

Resolution:We suggest including an option to enable it if necessary.

Status: Acknowledged

(5) The startTrading needs the Coin and token balance of the token contract:

Before startTrading, the Owner has to transfer tokens and coins to the contract manually.

Resolution: We suggest either adding direct transfer in the code or the Owner has to take

care of these steps before startTrading

Status: Acknowledged

Centralization Risk

The OmniTensor smart contract is 100% decentralized as it renounces ownership,
making it ownerless.

Therefore, there is no centralization risk.

Conclusion

We were given a contract code in the form of an etherscan.io weblink, and we used all

possible tests based on the given objects. We have observed 3 low and 5 very low

severity issues. We confirm that all smart contract issues are acknowledged. So, the
smart contract is ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all security vulnerabilities and other issues found in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/address/0x6f2ee0e1ebfa00015d3040760f6c039f46b6c662#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of the functionality of the software under review. We then meet with the developers to gain

an appreciation of their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm threat models

and attack surfaces. We read design documentation, review other audit results, search for

similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - OmniTensor

Slither Results Log
Slither Log >> OmniTensor.sol

INFO:Detectors:
Reentrancy in OmniTensor._executeTransfer(address,address,uint256)
(OmniTensorensor.sol#265-297):

External calls sending eth:
- _exchangeTokensForEth(contractTokenBalance) (OmniTensor.sol#290)

- (success) = OmegaWallet.call{value: OmegaFund}() (OmniTensor.sol#350)
- (success,None) = GammaWallet.call{value: GammaFund}() (OmniTensor.sol#351)
- (success,None) = BetaWallet.call{value: BetaFund}() (OmniTensor.sol#352)
- (success,None) = AlphaWallet.call{value: AlphaFund}() (OmniTensor.sol#353)

State variables written after the call(s):
- _executeTokenTransfer(from,to,amount,taxRate) (OmniTensor.sol#296)

- _balances[from] -= amount (OmniTensor.sol#255)
- _balances[to] += transferAmount (OmniTensor.sol#256)
- _balances[address(this)] += taxAmount (OmniTensor.sol#257)

OmniTensorensor._balances (OmniTensor.sol#100) can be used in cross function
reentrancies:

- OmniTensorensor._executeTokenTransfer(address,address,uint256,uint256)
(OmniTensor.sol#251-260)

- OmniTensorensor.balanceOf(address) (OmniTensor.sol#163-165)
- OmniTensorensor.constructor() (OmniTensor.sol#126-137)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities
INFO:Detectors:
OmniTensorensor.startTrading() (OmniTensor.sol#204-222) ignores return value by
_uniswapV2Router.addLiquidityETH{value:
address(this).balance}(address(this),balanceOf(address(this)),0,0,owner(),block.timestamp)
(OmniTensor.sol#210-217)
OmniTensorensor.startTrading() (OmniTensor.sol#204-222) ignores return value by
IERC20(uniswapV2Pair).approve(address(_uniswapV2Router),type()(uint256).max)
(OmniTensor.sol#219)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
OmniTensorensor.adjustTaxRates(uint256,uint256) (OmniTensor.sol#242-246) should emit an
event for:

- buyFeeRate = newBuyTaxRate (OmniTensor.sol#244)
- sellFeeRate = newSellTaxRate (OmniTensor.sol#245)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic
INFO:Detectors:
Reentrancy in OmniTensorensor.startTrading() (OmniTensor.sol#204-222):

External calls:
- uniswapV2Pair =

IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this),_uniswapV2Router.WE

TH()) (OmniTensor.sol#207)
Event emitted after the call(s):
- Approval(owner,spender,amount) (OmniTensor.sol#198)

- _setAllowance(address(this),address(_uniswapV2Router),_totalSupply)
(OmniTensor.sol#208)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Pragma version0.8.20 (OmniTensor.sol#3) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.20 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in OmniTensorensor.withdrawEth() (OmniTensor.sol#302-305):

- (success) = owner().call{value: address(this).balance}() (OmniTensor.sol#303)
Low level call in OmniTensorensor._exchangeTokensForEth(uint256) (OmniTensor.sol#329-357):

- (success) = OmegaWallet.call{value: OmegaFund}() (OmniTensor.sol#350)
- (success,None) = GammaWallet.call{value: GammaFund}() (OmniTensor.sol#351)
- (success,None) = BetaWallet.call{value: BetaFund}() (OmniTensor.sol#352)
- (success,None) = AlphaWallet.call{value: AlphaFund}() (OmniTensor.sol#353)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Function IUniswapV2Router02.WETH() (OmniTensor.sol#82) is not in mixedCase
Constant OmniTensorensor._totalSupply (OmniTensor.sol#98) is not in
UPPER_CASE_WITH_UNDERSCORES
Constant OmniTensorensor._minSwapTokens (OmniTensor.sol#104) is not in
UPPER_CASE_WITH_UNDERSCORES
Variable OmniTensorensor.OmegaWallet (OmniTensor.sol#116) is not in mixedCase
Variable OmniTensorensor.GammaWallet (OmniTensor.sol#117) is not in mixedCase
Variable OmniTensorensor.BetaWallet (OmniTensor.sol#118) is not in mixedCase
Variable OmniTensorensor.AlphaWallet (OmniTensor.sol#119) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
OmniTensorensor.slitherConstructorVariables() (OmniTensor.sol#94-360) uses literals with too
many digits:

- _maxSwapTokens = 5000000 * 10 ** _tokenDecimals (OmniTensor.sol#105)
OmniTensorensor.slitherConstructorVariables() (OmniTensor.sol#94-360) uses literals with too
many digits:

- maxTxValue = 5000000 * 10 ** _tokenDecimals (OmniTensor.sol#107)
OmniTensorensor.slitherConstructorVariables() (OmniTensor.sol#94-360) uses literals with too
many digits:

- maxWalletHoldings = 10000000 * 10 ** _tokenDecimals (OmniTensor.sol#108)
OmniTensorensor.slitherConstructorConstantVariables() (OmniTensor.sol#94-360) uses literals
with too many digits:

- _totalSupply = 1000000000 * 10 ** _tokenDecimals (OmniTensor.sol#98)
OmniTensorensor.slitherConstructorConstantVariables() (OmniTensor.sol#94-360) uses literals

with too many digits:
- _minSwapTokens = 100000 * 10 ** _tokenDecimals (OmniTensor.sol#104)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
OmniTensorensor._maxSwapTokens (OmniTensor.sol#105) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Detectors:
OmniTensorensor.AlphaWallet (OmniTensor.sol#119) should be immutable
OmniTensorensor.BetaWallet (OmniTensor.sol#118) should be immutable
OmniTensorensor.GammaWallet (OmniTensor.sol#117) should be immutable
OmniTensorensor.OmegaWallet (OmniTensor.sol#116) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-immutable
INFO:Slither:OmniTensor.sol analyzed (6 contracts with 93 detectors), 40 result(s) found

Solidity Static Analysis
OmniTensor.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 341:12:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 353:22:

Gas costs:
Gas requirement of function OmniTensor.withdrawEth is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 302:4:

Gas costs:
Gas requirement of function OmniTensor.executeManualSwap is infinite: If the gas requirement of
a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 320:4:

Similar variable names:
OmniTensor._executeTransfer(address,address,uint256) : Variables have very similar names
"_minSwapTokens" and "_maxSwapTokens". Note: Modifiers are currently not considered by this
static analysis.
Pos: 287:45:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 356:8:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 348:28:

Solhint Linter

OmniTensor.sol

Compiler version 0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:2
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:29
Error message for require is too long
Pos: 9:53
Function name must be in mixedCase
Pos: 5:81
Contract has 16 states declarations but allowed no more than 15
Pos: 1:93
Constant name must be in capitalized SNAKE_CASE
Pos: 5:103
Variable name must be in mixedCase
Pos: 5:115
Explicitly mark visibility of state
Pos: 5:116
Variable name must be in mixedCase
Pos: 5:116
Explicitly mark visibility of state
Pos: 5:117
Variable name must be in mixedCase
Pos: 5:117
Explicitly mark visibility of state
Pos: 5:118
Variable name must be in mixedCase
Pos: 5:118
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:125
Error message for require is too long
Pos: 13:185
Error message for require is too long
Pos: 17:275
Avoid making time-based decisions in your business logic
Pos: 13:340
Variable name must be in mixedCase
Pos: 9:346
Variable name must be in mixedCase
Pos: 9:347
Code contains empty blocks
Pos: 32:358

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

