

 Project: WOW LLC (WOW)
 Website: wow.llc
 Twitter: x.com/WOW_LLC_2025

 Platform: Ethereum
 Language: Solidity

 Date: February 18th, 2025

https://wow.llc
https://x.com/WOW_LLC_2025

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions …………………………………-…………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 21

● Solidity static analysis ….……………………………………………………………….. 22

● Solhint Linter …………………………………………………………………….……….. 23

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT AND MAY

CONTAIN INFORMATION THAT IS CONFIDENTIAL. WHICH INCLUDES

ANY POTENTIAL VULNERABILITIES AND MALICIOUS CODES THAT

CAN BE USED TO EXPLOIT THE SOFTWARE. THIS MUST BE

REFERRED INTERNALLY AND ONLY SHOULD BE MADE AVAILABLE

TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction

EtherAuthority was contracted by WOW LLC to perform the Security audit of the WOW
Token smart contract code. The audit was performed using manual analysis and
automated software tools. This report presents all the findings regarding the audit
performed on February 18th, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

This Solidity code defines an implementation of the ERC-20 token standard, including

interfaces for ERC-20, ERC-721, and ERC-1155 error handling. The contract includes:

1. Standard ERC-20 Interface (IERC20)
○ Defines basic ERC-20 functions (transfer, approve, allowance, balanceOf,

totalSupply).

○ Includes Transfer and Approval events.

2. Custom ERC-20 Errors (IERC20Errors)
○ Defines custom errors such as ERC20InsufficientBalance,

ERC20InvalidSender, ERC20InvalidReceiver, and

ERC20InsufficientAllowance.

3. Custom ERC-721 and ERC-1155 Errors (IERC721Errors, IERC1155Errors)
○ Defines errors specific to ERC-721 and ERC-1155 tokens, such as

ERC721InvalidOwner, ERC721NonexistentToken, and

ERC1155InsufficientBalance.

4. ERC-20 Metadata Interface (IERC20Metadata)
○ Extends IERC20 to include functions for name(), symbol(), and decimals().

5. Context Contract (Context)
○ Provides _msgSender() and _msgData() helper functions.

6. ERC-20 Implementation (ERC20)
○ Implements IERC20, IERC20Metadata, and IERC20Errors.

○ Stores balances in _balances mapping and allowances in _allowances

mapping.

○ Implements transfer, approve, and transferFrom with error handling.

○ _transfer function ensures valid addresses and calls _update, which

manages token balance changes.

Audit scope

Name Code Review and Security Analysis Report for
WOW LLC (WOW) Smart Contract

Platform Ethereum / Solidity

File WOWERC20.sol

Smart Contract 0x8c5d1963e41eb351495d6a7a068052103a47b40c

Audit Date February 18th, 2025

https://etherscan.io/token/0x8c5d1963e41eb351495d6a7a068052103a47b40c#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Token Details:
● Name: WOW LLC

● Symbol: WOW

● Decimals: 18

● Total Supply: 1 billion

YES, This is valid.

Key Features:

1. ERC-20 Standard Compliance:
○ Implements IERC20 and IERC20Metadata

interfaces.

○ Supports token transfers, approvals, and

allowances.

2. Custom Error Handling:
○ Implements IERC20Errors, IERC721Errors, and

IERC1155Errors for structured error reporting.

○ Replaces traditional required statements with

Solidity's error mechanism for gas-efficient failure

handling.

3. Token Metadata:
○ Provides name, symbol, and decimals functions for

token identification.

4. Secure Allowance Mechanism:
○ Implements approve, allowance, and transferFrom

with security checks.

○ Prevents race conditions in token approvals.

5. Safe Transfers and Updates:
○ Uses _update and _transfer functions for balance

adjustments.

YES, This is valid.

○ Prevents transfers to the zero address.

Other Specification:

● This contract has no ownership control, hence it is

100% decentralized.

YES, This is valid.

Audit Summary

According to the standard audit assessment, Customer`s solidity-based smart contracts
are “Well Secured”. This contract has no ownership control, hence it is 100%
decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 0 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check No

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? No

Pause Transfer? Not Detected

Max Transaction amount? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? No

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the WOW Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the WOW Token.

The WOW LLC team has not provided scenario and unit test scripts, which would help to

determine the integrity of the code automatically.

The smart contracts comment on code parts well, using Ethereum’s NatSpec commenting

style, which is a good thing.

Documentation

We were given a WOW Token smart contract code in the form of an etherscan.io weblink.

As mentioned above, the code parts are well commented on. And the logic is

straightforward. So, it is easy to understand the programming flow and complex code logic

quickly. Comments are very helpful in understanding the overall architecture of the

protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x8c5d1963e41eb351495d6a7a068052103a47b40c#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transfer from write Passed No Issue
11 _transfer internal Passed No Issue
12 _update internal Passed No Issue
13 _mint internal Passed No Issue
14 _burn internal Passed No Issue
15 _approve internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue
18 _msgSender internal Passed No Issue
19 _msgData internal Passed No Issue
20 _contextSuffixLength internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

No low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

No very low-severity vulnerabilities were found.

Centralization Risk

The WOW Token smart contract does not have any ownership control, hence it is 100%
decentralized.

Therefore, there is no centralization risk.

Conclusion

We were given a contract code as an etherscan.io weblink, and we used all possible tests

based on the given objects. We have not observed any issues. So, the smart contract is
ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all security vulnerabilities and other issues found in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Well Secured”.

https://etherscan.io/token/0x8c5d1963e41eb351495d6a7a068052103a47b40c#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of the functionality of the software under review. We then meet with the developers to gain

an appreciation of their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm threat models

and attack surfaces. We read design documentation, review other audit results, search for

similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report only. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - WOW LLC

Slither Results Log

Slither Log >> WOWERC20.sol

INFO:Detectors:
Context._contextSuffixLength() (WOWERC20.sol#257-259) is never used and should be
removed
Context._msgData() (WOWERC20.sol#253-255) is never used and should be removed
ERC20._burn(address,uint256) (WOWERC20.sol#486-491) is never used and should be
removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Slither:WOWERC20.sol analyzed (8 contracts with 93 detectors), 3 result(s) found

Solidity Static Analysis

WOWERC20.sol

Gas costs:
Gas requirement of function WOWERC20.approve is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 377:10:

Gas costs:
Gas requirement of function WOWERC20.transferFrom is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 399:10:

Similar variable names:
ERC20.(string,string) : Variables have very similar names "_symbol" and "symbol_".
Pos: 297:14:

Solhint Linter

WOWERC20.sol

Compiler version ^0.8.0 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:294
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:564

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

