

Project: catchcoin
Website: catchcoin.com

 Platform: Base Chain Network
Language: Solidity

 Date: February 14th, 2025

https://www.catchcoin.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..11

Technical Quick Stats …..……………………………………………………………………… 12

Business Risk Analysis …..…………………………………………………………………… 13

Code Quality ……………………………………………………………………………………. 14

Documentation ………………………………………………………………………………….. 14

Use of Dependencies …………………………………………………………………………… 14

AS-IS overview ………………………………………………………………………………….. 15

Severity Definitions …………………………………-…………………………………………... 17

Audit Findings …………………………………………………………………………………… 18

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 25

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 30

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT THAT MAY

CONTAIN INFORMATION THAT IS CONFIDENTIAL. WHICH INCLUDES

ANY POTENTIAL VULNERABILITIES AND MALICIOUS CODES THAT

CAN BE USED TO EXPLOIT THE SOFTWARE. THIS MUST BE

REFERRED INTERNALLY AND ONLY SHOULD BE MADE //’AVAILABLE

TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction

EtherAuthority was contracted by catchcoin to perform the Security audit of the CATCH
Token smart contract code. The audit was performed using manual analysis and
automated software tools. This report presents all the findings regarding the audit
performed on February 14th, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

CATCHCoin is a reflection-based ERC20 token with automated tax distribution, liquidity

management, and trading control mechanisms. It integrates with Uniswap V2 for

automated market-making and includes features such as:

● Reflection Mechanism: Rewards token holders automatically through transaction

fees.

● Liquidity Management: Automatically adds liquidity via Uniswap V2.

● Tax and Fee Structure: Supports buy/sell tax, reflection fees, liquidity fees, coin

operation tax, and burn tax.

● Trading Controls: These include trading enable/disable functionality and an initial

restriction period for anti-bot protection.

● Exclusion Mechanism: Allows specific addresses to be excluded from fees and

rewards.

● Fund Wallet: A dedicated wallet for operational costs, funded by transaction fees.

● Swap and Liquify: Converts collected fees into liquidity to maintain a stable

market.

● Ownership and Access Control: Only the owner can modify tax rates, exclude

addresses, and enable trading.

CATCHCoin is designed for sustainability and fair token distribution, ensuring a balance

between rewards, liquidity, and ecosystem growth.

Audit scope

Name Code Review and Security Analysis Report for
catchcoin Smart Contract

Platform Base Chain Network

Language Solidity

File CatchCoin.sol

Initial Code Link 0x44f77502418c9b225ad8f80a9def915c8c271a19

Audit Date February 14th, 2025

https://basescan.org/address/0x44f77502418c9b225ad8f80a9def915c8c271a19#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Token Details:
● Name: catchcoin

● Symbol: CATCH

● Decimals: 18

● Total Supply: 180 Million CATCH tokens.

YES, This is valid.

Key Components:
1. Dual Accounting & Reflection:

● Reflection vs. Token Balances:
○ The contract uses two parallel balances:

■ _rOwned: Reflection balances for

every address.

■ _tOwned: Actual token balances for

addresses excluded from the reward

mechanism.

● Reward Distribution:
○ A portion of every transaction is taken as a

fee (the reflection fee) and redistributed to

all holders via an adjustment of the total

reflections (_rTotal). This process is

managed by helper functions like

_reflectFee, which reduce the reflection

supply and update the total fees collected.

● Conversion Helpers:
○ Functions like tokenFromReflection and

_getRate allow conversion between the

reflection (R-values) and actual token

(t-values) balances.

YES, This is valid. We
suggest renouncing
ownership once the
ownership functions are
not needed. This is to
make the smart contract
100% decentralized.

2. Fee Structure:

● The contract imposes several fees on transfers,

which are calculated as percentages of the

transaction amount:

● Reflection Fee (refAmt):
○ A fee that is redistributed to token holders.

● Liquidity Fee (liquidty):
○ A fee accumulated within the contract is

later used to add liquidity to a Uniswap

pool.

● Coin Operation Fee (coinOperation):
○ A fee that is sent to a designated fund

wallet, potentially used for development,

marketing, or other operational costs.

● Burn Fee (burn):
○ A fee that permanently removes tokens

from the total supply, creating a deflationary

effect.

Dynamic Fee Application:
● Buy vs. Sell Fees:

○ The function _sellBuyTax sets different fee

rates based on the transaction type.

○ Buy Transactions (when tokens are
purchased from the liquidity pool):

■ Reflection Fee: 1%

■ Coin Operation Fee: 1%

■ Liquidity Fee: 1%

■ Burn Fee: 0%

○ Sell Transactions (when tokens are sold
back to the liquidity pool):

■ Reflection Fee: 2%

■ Coin Operation Fee: 1%

■ Liquidity Fee: 2%

■ Burn Fee: 1%

● Early Trading Period:
○ The contract sets a startingHr variable

(current time plus 4 hours) during

deployment. For transactions that occur

before this period expires, additional or

altered fee logic is applied:

■ For example, on buys during this

period, half of the transaction amount

is taken as an extra tax and

transferred to the contract address.

This measure is likely intended to

deter bots and early speculative

trading.

3. Automatic Liquidity (Swap and Liquify):

● Liquidity Threshold:
○ The contract accumulates tokens from

liquidity fees. Once the token balance held

by the contract reaches a certain threshold

(numTokensSellToAddToLiquidity), the

swap and liquify process is triggered.

● Swap and Liquify Process:
○ The function swapAndLiquify performs the

following steps:

■ Splitting Tokens: The accumulated

tokens are split into two halves.

■ Swapping for ETH: One-half is

swapped for ETH using the Uniswap

router.

■ Adding Liquidity: The other half of

the tokens is paired with the acquired

ETH and added to the liquidity pool.

○ This process is guarded by the

lockTheSwap modifier to prevent

reentrancy issues.

4. Trading Control and Anti-Bot Measures:

● Trading Enablement:
○ Trading is controlled by a boolean flag

tradeEnabled. Until the owner explicitly calls

startTrading, no transfers (apart from those

by the owner) can take place.

● Initial Trading Restrictions:
○ During the first 4 hours after deployment,

the contract applies special fee logic to

discourage bots and rapid trading. This is

enforced by comparing the current block

timestamp with the startingHr value.

5. Exclusions from Fees and Rewards:

● Fee Exclusion:
○ Certain addresses (like the owner or the

contract itself) can be excluded from paying

fees. This is managed using the

_isExcludedFromFee mapping, with

functions excludeFromFee and

includeInFee to update the status.

● Reward Exclusion:
○ Addresses can also be excluded from

receiving reflections. The _isExcluded

mapping and functions

excludeFromReward/includeInReward

manage this feature. For excluded

addresses, the contract maintains an actual

token balance (_tOwned) rather than relying

on the reflection mechanism.

6. Airdrop Functionality:

● Bulk Transfers:
○ The airdrop function allows the owner to

send tokens to multiple addresses in one

transaction. It first verifies that the total

airdrop amount does not exceed the

sender’s balance and then performs

individual transfers using the

_tokenTransfer function.

7. Uniswap Integration

● Router and Pair Initialization:
○ During contract deployment, the contract:

■ Sets the Uniswap V2 router (using a

provided address on the Base

network).

■ Creates a liquidity pair for the token

and the network’s wrapped ETH

(WETH) via the Uniswap factory.

● Liquidity Operations:
○ The functions swapTokensForEth and

addLiquidity facilitate token swaps and

liquidity additions on Uniswap, using the

standard Uniswap V2 router interface.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Technically Secured”. Also, this contract contains owner control, which
does not make it fully decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 0 very low-level issues.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 3%
(Reflection: 1%, Liquidity: 1%, Coin

Operation: 1%)

Sell Tax 6%
(Reflection: 2%, Liquidity: 2%, Coin

Operation: 1%, Burn: 1%)

Cannot Buy No

Cannot Sell No

Max Tax No

Modify Tax Yes
(adjustable by owner)

Fee Check Yes
(Tax fees are verified and processed per

transaction)

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Yes
(adjustable by owner)

Pause Transfer? Not Detected

Max Transaction amount? No

Is it Anti-whale? No

Is Anti-bot? Not Detected

Is it a Blacklist? Yes
(Owner can blacklist addresses)

Blacklist Check Yes

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in the CATCH Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties/methods can be reused many

times by other contracts in the CATCH Token.

The Etherauthority team has not used scenario and unit test scripts, which have helped to

determine the integrity of the code in an automated way.

The smart contracts comment on code parts well commented on, using Ethereum’s

NatSpec commenting style, which is good.

Documentation

We were given a CATCH Token smart contract code in the form of a basescan.org

weblink.

As mentioned above, the code parts are well commented on. And the logic is

straightforward. So, it is easy to understand the programming flow and complex code logic

quickly. Comments are very helpful in understanding the overall architecture of the

protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://basescan.org/address/0x44f77502418c9b225ad8f80a9def915c8c271a19#code

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 lockTheSwap modifier Passed No Issue
3 name external Passed No Issue
4 symbol external Passed No Issue
5 decimals external Passed No Issue
6 totalSupply external Passed No Issue
7 balanceOf read Passed No Issue
8 transfer external Passed No Issue
9 allowance external Passed No Issue

10 approve write Passed No Issue
11 transferFrom external Passed No Issue
12 increaseAllowance external Passed No Issue
13 decreaseAllowance external Passed No Issue
14 isExcludedFromReward external Passed No Issue
15 totalFees external Passed No Issue
16 deliver external Passed No Issue
17 reflectionFromToken external Passed No Issue
18 tokenFromReflection read Passed No Issue
19 excludeFromReward external access only Owner No Issue
20 includeInReward external access only Owner No Issue
21 _transferBothExcluded write Passed No Issue
22 excludeFromFee external access only Owner No Issue
23 includeInFee external access only Owner No Issue
24 setFundWallet1 external access only Owner No Issue
25 setFundWallet2 external access only Owner No Issue
26 setSwapAndLiquifyEnabled external access only Owner No Issue
27 updateThreshold external access only Owner No Issue
28 receive external Passed No Issue
29 _reflectFee write Passed No Issue
30 _takeCoinFund write Passed No Issue
31 _getValues read Passed No Issue
32 _getValue read Passed No Issue
33 _getTValues read Passed No Issue
34 _getRValues read Passed No Issue
35 _getRate read Passed No Issue
36 _getCurrentSupply read Passed No Issue
37 _takeLiquidity write Passed No Issue
38 calculateTaxFee read Passed No Issue
39 calculateLiquidityFee read Passed No Issue
40 calculateCoinOperartionTax read Passed No Issue
41 calculateBurnTax read Passed No Issue
42 removeAllFee write Passed No Issue

42 isExcludedFromFee external Passed No Issue
43 _approve write Passed No Issue
44 startTrading external access only Owner No Issue
45 _transfer write Passed No Issue
46 airdrop external access only Owner No Issue
47 _sellBuyTax write Passed No Issue
48 swapAndLiquify write lockTheSwap No Issue
49 swapTokensForEth write Passed No Issue
50 addLiquidity write Passed No Issue
51 _tokenTransfer write Passed No Issue
52 _transferStandard write Passed No Issue
53 _transferToExcluded write Passed No Issue
54 _transferFromExcluded write Passed No Issue
55 owner read Passed No Issue
56 onlyOwner modifier Passed No Issue
57 renounceOwnership write access only Owner No Issue
58 transferOwnership write access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high-severity vulnerabilities were found.

Medium

No medium-severity vulnerabilities were found.

Low

No Low-severity vulnerabilities were found.

Very Low / Informational / Best practices:

No informational severity vulnerabilities were found.

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet's private key is compromised, then it creates trouble. The following are

Admin functions:

CatchCoin.sol
● excludeFromReward: Allows the owner the ability to exclude an address from

earning reflections.

● includeInReward: Grants the owner the ability to include an account in the reward

distribution.

● excludeFromFee: Grants the owner the ability to exclude an address from

transaction fees.

● includeInFee: Grants the owner the ability to include an address in transaction fees.

● setFundWallet1: Allows the owner to set the address of the fundwallet1.

● setFundWallet2: Allows the owner to set the address of the fundwallet2.

● setSwapAndLiquifyEnabled: Allows the owner to enable or disable the swap and

liquify feature.

● updateThreshold: Allows the owner to update the threshold amount required for

triggering liquidity addition.

● startTrading: Enables trading for the token by the owner.

● airdrop: Airdrops tokens to multiple addresses by the owner.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code as a basescan.org weblink and used all possible tests

based on the given objects. We have not observed any issues. So, the smart contract is
ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all security vulnerabilities and other issues found in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Technically Secured”.

https://basescan.org/address/0x44f77502418c9b225ad8f80a9def915c8c271a19#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of the functionality of the software under review. We then meet with the developers to gain

an appreciation of their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm threat models

and attack surfaces. We read design documentation, review other audit results, search for

similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report only. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - catchcoin

Slither Results Log

Slither Log >> CatchCoin.sol

INFO:Detectors:
CATCHCOIN.allowance(address,address).owner (CatchCoin.sol#532) shadows:
 - Ownable.owner() (CatchCoin.sol#174-176) (function)
CATCHCOIN._approve(address,address,uint256).owner (CatchCoin.sol#1060) shadows:
 - Ownable.owner() (CatchCoin.sol#174-176) (function)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Reentrancy in CATCHCOIN.swapAndLiquify(uint256) (CatchCoin.sol#1237-1258):
 External calls:
 - swapTokensForEth(half) (CatchCoin.sol#1249)
 -
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,pat
h,address(this),block.timestamp) (CatchCoin.sol#1278-1284)
 - addLiquidity(otherHalf,newBalance) (CatchCoin.sol#1255)
 - uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp)
(CatchCoin.sol#1303-1310)
 External calls sending eth:
 - addLiquidity(otherHalf,newBalance) (CatchCoin.sol#1255)
 - uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp)
(CatchCoin.sol#1303-1310)
 State variables written after the call(s):
 - addLiquidity(otherHalf,newBalance) (CatchCoin.sol#1255)
 - _allowances[owner][spender] = amount (CatchCoin.sol#1064)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in CATCHCOIN.swapAndLiquify(uint256) (CatchCoin.sol#1237-1258):
 External calls:
 - swapTokensForEth(half) (CatchCoin.sol#1249)
 -
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,pat
h,address(this),block.timestamp) (CatchCoin.sol#1278-1284)
 - addLiquidity(otherHalf,newBalance) (CatchCoin.sol#1255)
 - uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp)
(CatchCoin.sol#1303-1310)
 External calls sending eth:
 - addLiquidity(otherHalf,newBalance) (CatchCoin.sol#1255)
 - uniswapV2Router.addLiquidityETH{value:

ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp)
(CatchCoin.sol#1303-1310)
 Event emitted after the call(s):
 - Approval(owner,spender,amount) (CatchCoin.sol#1065)
 - addLiquidity(otherHalf,newBalance) (CatchCoin.sol#1255)
 - SwapAndLiquify(half,newBalance,otherHalf) (CatchCoin.sol#1257)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
CATCHCOIN._transfer(address,address,uint256) (CatchCoin.sol#1101-1157) uses timestamp for
comparisons
 Dangerous comparisons:
 - startingHr >= block.timestamp (CatchCoin.sol#1139)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
CATCHCOIN.includeInReward(address) (CatchCoin.sol#688-699) has costly operations inside a
loop:
 - _excluded.pop() (CatchCoin.sol#695)
CATCHCOIN.removeAllFee() (CatchCoin.sol#1031-1036) has costly operations inside a loop:
 - refAmt = 0 (CatchCoin.sol#1032)
CATCHCOIN.removeAllFee() (CatchCoin.sol#1031-1036) has costly operations inside a loop:
 - coinOperation = 0 (CatchCoin.sol#1033)
CATCHCOIN.removeAllFee() (CatchCoin.sol#1031-1036) has costly operations inside a loop:
 - liquidty = 0 (CatchCoin.sol#1034)
CATCHCOIN.removeAllFee() (CatchCoin.sol#1031-1036) has costly operations inside a loop:
 - burn = 0 (CatchCoin.sol#1035)
CATCHCOIN._reflectFee(uint256,uint256,uint256) (CatchCoin.sol#811-821) has costly
operations inside a loop:
 - _rTotal = _rTotal - rFee - rBurn (CatchCoin.sol#815)
CATCHCOIN._reflectFee(uint256,uint256,uint256) (CatchCoin.sol#811-821) has costly
operations inside a loop:
 - _tFeeTotal = _tFeeTotal + tFee (CatchCoin.sol#816)
CATCHCOIN._reflectFee(uint256,uint256,uint256) (CatchCoin.sol#811-821) has costly
operations inside a loop:
 - _tTotal = _tTotal - tBurn (CatchCoin.sol#818)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop
INFO:Detectors:
CATCHCOIN._rTotal (CatchCoin.sol#384) is set pre-construction with a non-constant function or
state variable:
 - (MAX - (MAX % _tTotal))
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-state
INFO:Detectors:
Function IUniswapV2Router01.WETH() (CatchCoin.sol#238) is not in mixedCase
Parameter CATCHCOIN.setFundWallet1(address)._fundWallet (CatchCoin.sol#761) is not in
mixedCase
Parameter CATCHCOIN.setSwapAndLiquifyEnabled(bool)._enabled (CatchCoin.sol#773) is not in
mixedCase

Parameter CATCHCOIN.updateThreshold(uint256)._amount (CatchCoin.sol#788) is not in
mixedCase
Parameter CATCHCOIN.calculateTaxFee(uint256)._amount (CatchCoin.sol#984) is not in
mixedCase
Parameter CATCHCOIN.calculateLiquidityFee(uint256)._amount (CatchCoin.sol#995) is not in
mixedCase
Parameter CATCHCOIN.calculateCoinOperartionTax(uint256)._amount (CatchCoin.sol#1006) is
not in mixedCase
Parameter CATCHCOIN.calculateBurnTax(uint256)._amount (CatchCoin.sol#1019) is not in
mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
Redundant expression "this (CatchCoin.sol#138)" inContext (CatchCoin.sol#132-141)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Detectors:
CATCHCOIN.slitherConstructorVariables() (CatchCoin.sol#372-1412) uses literals with too many
digits:
 - _tTotal = 180000000 * 10 ** 18 (CatchCoin.sol#383)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
Loop condition i < _excluded.length (CatchCoin.sol#953) should use cached array length instead
of referencing `length` member of the storage array.
 Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#cache-array-length
INFO:Detectors:
CATCHCOIN.startingHr (CatchCoin.sol#392) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-immutable
INFO:Slither:CatchCoin.sol analyzed (7 contracts with 93 detectors), 33 result(s) found

Solidity Static Analysis

CatchCoin.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
CATCHCOIN.swapTokensForEth(uint256): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.
Pos: 1289:22:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 1323:42:

Gas costs:
Gas requirement of function CATCHCOIN.updateThreshold is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 803:13:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.
Pos: 1185:43:

ERC20:
ERC20 contract's "decimals" function should have "uint8" as return type
Pos: 502:84:

Constant/View/Pure functions:
CATCHCOIN.reflectionFromToken(uint256,bool) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.
Pos: 650:78:

Similar variable names:
CATCHCOIN.(address) : Variables have very similar names "_rOwned" and "_tOwned". Note:
Modifiers are currently not considered by this static analysis.
Pos: 454:1:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 1188:14:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 1254:32:

Solhint Linter

CatchCoin.sol

Compiler version 0.8.27 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:54
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:164
Error message for require is too long
Pos: 9:202
Function name must be in mixedCase
Pos: 5:237
Contract has 19 states declarations but allowed no more than 15
Pos: 1:371
Explicitly mark visibility of state
Pos: 5:404
Explicitly mark visibility of state
Pos: 5:405
Explicitly mark visibility of state
Pos: 5:406
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:435
Avoid making time-based decisions in your business logic
Pos: 22:453
Error message for require is too long
Pos: 9:788
Code contains empty blocks
Pos: 32:794
Error message for require is too long
Pos: 9:1103
Provide an error message for require
Pos: 9:1110
Avoid making time-based decisions in your business logic
Pos: 30:1138
Error message for require is too long
Pos: 9:1167
Avoid making time-based decisions in your business logic
Pos: 13:1282
Avoid making time-based decisions in your business logic
Pos: 13:1308

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

