@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Tether USD (USDT)
Website: binance.com
Platform: Binance Network
Language: Solidity

DEI(H April 3rd, 2025

https://www.binance.com/en/trade/BNB_USDT?type=spot

Table of Contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 8
Technical QUICK Stats ..o e 9
Code QUANIRY ... e 10
DOoCUMENTAtION ... 10
USE Of DEPENUENCIES ... e e nenaenes 10
ASIS OVEIVIEW ... 11
Severity DefinitioNS ... 12
AUt FINAINGS oo e 13
@70 o T3 1017 T o 16
(@ 0] 1Y/ =1 1 T To [o] 0T) 17
DISCIAIMEIS ... e 19
Appendix
o Code FIoW Diagramououoiiii s 20
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 23
® SOININt LiNtEr oo 24

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT THAT MAY
CONTAIN INFORMATION THAT IS CONFIDENTIAL. WHICH INCLUDES
ANY POTENTIAL VULNERABILITIES AND MALICIOUS CODES WHICH
CAN BE USED TO EXPLOIT THE SOFTWARE. THIS MUST BE
REFERRED INTERNALLY AND ONLY SHOULD BE MADE AVAILABLE
TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

As part of EtherAuthority’s community smart contract audit initiatives, the smart contract of
the USDT Token from binance.com was audited. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on April 3rd, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The solidity contract for a BEP20 token named "BEP20USDT," which mimics Tether
(USDT) on the Binance Smart Chain (BSC). Here’s a quick description of the contract:

Description of BEP20USDT Contract:

e Implements the IBEP20 interface, following the BEP20 token standard.

e SafeMath is used for safe arithmetic operations to prevent overflows and
underflows.

e Extends the Ownable contract, allowing an owner to manage specific
administrative functions.

e Defines standard BEP20 functions, including transfer, approve, transferFrom,
allowance, and balance tracking.

e Supports minting (creating new tokens) and burning (removing tokens from
circulation).

e The contract initializes with a total supply of 30 million USDT assigned to the
deployer.

e Includes increaseAllowance and decreaseAllowance functions to handle approval

changes safely.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Tether USD (USDT) Token Smart Contract

Platform Binance Network

File BEP20USDT.sol

Smart Contract Code 0x55d398326199059ff775485246999027b3197955

Audit Date April 3rd, 2025

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/token/0x55d398326f99059ff775485246999027b3197955#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: Tether USD
e Symbol: USDT

e Decimals: 18

Key Features:

1. BEP20 Standard Implementation

Follows the BEP20 token standard, ensuring
compatibility with Binance Smart Chain (BSC)
applications.

e Implements functions such as transfer, approve,

transferFrom, and allowance.

2. SafeMath for Secure Arithmetic

SafeMath is used to prevent overflows and

underflows in token operations.

3. Ownable (Admin Control)

The contract extends Ownable, granting only the
owner permission to perform specific

administrative tasks.
4. Minting (Token Creation)

Allows the owner to mint new tokens and increase

the total supply.

5. Burning (Token Reduction)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(=]

N

(o]

Supports burning tokens, allowing holders to

permanently remove tokens from circulation.
. Fixed Initial Supply

30,000,000 BEP20USDT tokens are minted at

deployment and assigned to the deployer.
. Approval & Allowance System

Users can approve third-party spenders to use
their tokens via approve and transferFrom.

Supports increaseAllowance and
decreaseAllowance for flexible spending

permissions.
. Standard Events for Transparency

Emits Transfer and Approval events for blockchain

traceability.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, the Customer's solidity-based smart contract
is “Secured.” This token contract has ownership control; hence, it is not fully 100%
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed, and applicable
vulnerabilities are presented in the Audit overview section. The general overview is
presented in the AS-IS section, and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 3 low, and 3 very low-level issues.

Investors' Advice: A Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner-controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed

Critical operation lacks event log
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code
Gas Optimization “Out of Gas” Issue

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inheritance, and Interfaces. This is a compact and well-written smart contract.

The libraries in USDT Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address, and its properties/methods can be reused many times by
other contracts in the USDT Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contract. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a USDT Token smart contract code in the form of a bscscan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries used in this smart contract infrastructure that is based

on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/token/0x55d398326f99059ff775485246999027b3197955#code

AS-IS overview

BEP20USDT.sol : Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [getOwner external Passed No Issue
3 | decimals external Passed No Issue
4 | symbol external Passed No Issue
5 | name external Passed No Issue
6 | totalSupply external Passed No Issue
7 | balanceOf external Passed No Issue
8 | transfer external Lack of Reentrancy Refer Audit

Guard Findings

9 [allowance external Passed No Issue
10 | approve external Passed No Issue
11 | transferFrom external Passed No Issue
12 | increaseAllowance write Passed No Issue
13 | decreaseAllowance write Passed No Issue
14 | mint write Lack of Reentrancy Refer Audit

Guard, No Events for Findings
Function, Potential for
Large Gas Fees Due to
Token Minting
15 | burn write Burn Function Doesn't Refer Audit
Restrict to Owner, Lack Findings
of Reentrancy Guard,
No Events for
Function, Potential for
Large Gas Fees Due to
Token Burning

16 | transfer internal Passed No Issue
17 | mint internal Passed No Issue
18 | burn internal Passed No Issue
19 | approve internal Passed No Issue
20 | burnFrom internal Passed No Issue
21 | owner read Passed No Issue
22 | onlyOwner modifier Passed No Issue
23 | renounceOwnership write access only Owner No Issue
24 | transferOwnership write access only Owner No Issue
25 | transferOwnership internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

(1) Burn Function Doesn't Restrict to Owner:

The burn() function can be called by any user, allowing anyone to burn tokens from their
own balance. While this may be intended, if the token supply is controlled centrally (like in
many tokens), this can create vulnerabilities by allowing users to burn tokens arbitrarily.

Resolution: Restrict the burn() function to only the owner or specific roles, unless it's an

intentional feature to allow anyone to burn tokens.

(2) Lack of Reentrancy Guard:
The contract does not have a reentrancy guard in place, which is essential to prevent
reentrancy attacks, especially in token transfer and mint/burn functions.

Resolution: Implement the ReentrancyGuard modifier from OpenZeppelin or custom

reentrancy protection for functions such as transfer(), mint(), and burn().

(3) No Events for mint() and burn() Functions:

The mint() and burn() functions don't emit events, making it harder to track the changes to
the total supply and individual token balances. This can make it difficult for users or other
systems to interact with the contract.

Resolution: Emit events for minting and burning activities (Mint() and Burn()) to ensure

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

transparency and easier tracking on-chain.

Very Low / Informational / Best practices:

(1) Potential for Large Gas Fees Due to Token Minting and Burning:
Both mint() and burn() functions involve increasing or decreasing the total supply, which
could result in high gas fees if not carefully optimized.

Resolution: Reassess the need for continuous minting or burning. Introduce batch

operations to allow more gas-efficient transactions when minting or burning tokens.

(2) Contract Versioning:
The contract uses Solidity version 0.5.16, which is quite outdated. Newer versions of
Solidity have numerous improvements in terms of security, gas efficiency, and features.

Resolution: Upgrade the Solidity version to the latest stable release (currently Solidity

0.8.x) and ensure compatibility with existing features.

(3) Unused _allowances Mapping:

The _allowances mapping and related functions (approve, allowance, transferFrom) are
included in the contract but are not used as extensively as they could be, which might
introduce unnecessary complexity and higher gas costs.

Resolution: Review the need for allowance functionality in this contract. If it's not needed,
remove these functions and mappings to simplify the contract and reduce gas

consumption.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If
the admin wallet's private key were compromised, then it would create trouble.

The following are Admin functions:

BEP20USDT.sol
e mint: Allows the owner to create ‘amount’ tokens and assigns them to

‘msg.sender’, increasing the total supply.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of bscscan web links. We have used all
possible tests based on the given objects as files. We observed 3 low and 3 informational
issues in the smart contract, and those issues are not critical. So, it’'s good to go for

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/token/0x55d398326f99059ff775485246999027b3197955#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early, even if they are later shown not
to represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

TetherToken Diagram

@ BEP20USDT

Context
IBEPZQ
Ownable

mSafelath for wint256

O address==uint256 _balances

O addregs=>mapping addregg=>uint256 _allowances
O uirt256 _totalSupply

O uints _cdecimals

< string _symbol

O string _name

Code Flow Diagram - Tether USD (USDT) Token

_ constructor__()
QgetOwner()

O decimals()
Qsymbol()

Q name()
CtotalSupply()

@ Qbalancedf()

@ transfer()

@ Sallowance()

D approve()

@ transferFrom()

D increasebllowance()
@ decreaselllowance)
@ mint()

@ burn()
 _transfer()
_mintf)

< _hurni)

< _approvel)

% _purnFrom()

200000

7 T ¥ %

for uint256

/ o

| 1
@) 1seP20 \

@ Cwnahble

o QtotalSupply()
@ G decimals()

@ Qeymbol() L]

@ Q.name() [< 2:338
@ QgetOwner() & Cumul)

@ Qhalancedf() I O Quddivi)

@ transfer() | < Cumod()

. @ SafeMath

Context

O address _owner

@ Qallowance()
@ approvel()
@ transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

@ f_;l:untex‘t

< _ _constructor__ ()
< 4,_msgSender()
o O,_mesgDatal)

“ __constructor__()
@ Qowner()

@ renouncelwnershipl)
@ transferOwnership()
< _transferOwnership()

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We did the analysis of the project altogether. Below are the results.
Slither Log >> BEP20USDT.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program
is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

BEP20USDT.sol

Gas costs:
Gas requirement of function BEP20USDT.mint is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or

actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 501:2:

Gas costs:

Gas requirement of function BEP20USDT.burn is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

ERC20 contract's "decimals" function should have "uint8" as return type
Pos: 375:2:

Guard conditions:
"assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Solhint Linters are the utility tools that analyze the given source code and report
programming errors, bugs, and stylistic errors. For the Solidity language, there are some
linter tools available that a developer can use to improve the quality of their Solidity

contracts.

BEP20USDT.sol

Code contains empty blocks

Pos: 27:110

Error message for require is long
5:199
message for require i long
5:336

Error message require i long

Pos: 5:528

Error message "~ require i long
Pos: 5:529

Error message require 1i: long
Pos: 5:565

Error message f require 1is long
5:586

rOor mes require i (long

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

	Description of BEP20USDT Contract:
	Key Features:
	1. BEP20 Standard Implementation
	2. SafeMath for Secure Arithmetic
	3. Ownable (Admin Control)
	4. Minting (Token Creation)
	5. Burning (Token Reduction)
	6. Fixed Initial Supply
	7. Approval & Allowance System
	8. Standard Events for Transparency

