

Project: XRP Token
Website: ripple.com

 Platform: Binance Network
Language: Solidity

 Date: April 4th, 2025

https://ripple.com/xrp/

Table of Contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 15

Our Methodology ………………………………………………………………………………... 16

Disclaimers ………………………………………………………………………………………. 18

Appendix

● Code Flow Diagram ……………………………………………………………………... 19

● Slither Results Log ………………………………………………………………………. 20

● Solidity static analysis ….……………………………………………………………….. 22

● Solhint Linter …………………………………………………………………….……….. 23

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT THAT MAY

CONTAIN INFORMATION THAT IS CONFIDENTIAL. WHICH INCLUDES

ANY POTENTIAL VULNERABILITIES AND MALICIOUS CODES WHICH

CAN BE USED TO EXPLOIT THE SOFTWARE. THIS MUST BE

REFERRED INTERNALLY AND ONLY SHOULD BE MADE AVAILABLE

TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction

As part of EtherAuthority’s community smart contract audit initiatives, the smart contract of
XRP Token from ripple.com/xrp was audited. The audit used manual analysis as well as
automated software tools. This report presents all the findings regarding the audit
performed on April 4th, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

This is a Solidity smart contract for a BEP20 token named XRP Token (XRP), deployed on

the Binance Smart Chain (BSC). It follows the BEP20 standard and includes standard

token functionalities such as:

● Basic BEP20 Functions: transfer, approve, allowance, transferFrom

● SafeMath Library: Prevents overflow/underflow issues

● Ownable Contract: Restricts certain functions to the owner

● Minting & Burning: Allows the owner to create and destroy tokens

● Events: Transfer and Approval for tracking transactions

The contract has a total supply of 42,000,000 XRP with 18 decimal places and assigns

the initial supply to the contract deployer.

Audit scope

Name Code Review and Security Analysis Report for XRP
Token Smart Contract

Platform Binance Network

File BEP20XRP.sol

Smart Contract Code 0x1d2f0da169ceb9fc7b3144628db156f3f6c60dbe

Audit Date April 4th, 2025

https://bscscan.com/token/0x1d2f0da169ceb9fc7b3144628db156f3f6c60dbe#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: XRP Token

● Symbol: XRP

● Decimals: 18

YES, This is valid.

Key Features:

Basic BEP20 Functionality:
● Standard BEP20 methods: transfer, approve, allowance,

transferFrom

● Implements IERC20 for compatibility with BSC wallets &

DApps

● Uses SafeMath to prevent overflows & underflows

Ownership & Control:

● Ownable: Only the owner can mint or burn tokens

● Ownership Transfer: Allows transferring contract

ownership

Token Supply Management:
● Minting: Owner can create new tokens

● Burning: Tokens can be destroyed to reduce supply

Security & Efficiency:
● Reentrancy Protection: Ensures safe transactions

● Gas Optimization: Efficient implementation to reduce

transaction costs

● Event Logging: Transfer and Approval events for

transaction tracking

Audit Summary

According to the standard audit assessment, the Customer's solidity-based smart contract
is “Secured.” Also, these contracts contain owner control, which does not make them fully
decentralized.

 You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed, and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section, and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 3 low, and 3 very low-level issues.

Investors' Advice: A Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inheritance, and Interfaces. This is a compact and well-written smart contract.

The libraries in XRP Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address, and its properties/methods can be reused many times by

other contracts in the XRP Token.

The EtherAuthority team has no scenario and unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contract. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an XRP Token smart contract code in the form of a bscscan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that is based

on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://bscscan.com/token/0x1d2f0da169ceb9fc7b3144628db156f3f6c60dbe#code

AS-IS overview

BEP20XRP.sol : Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 decimals external Passed No Issue
4 symbol external Passed No Issue
5 name external Passed No Issue
6 totalSupply external Passed No Issue
7 balanceOf external Passed No Issue
8 transfer external Lack of Reentrancy

Guard
Refer Audit

Findings
9 allowance external Passed No Issue

10 approve external Passed No Issue
11 transferFrom external Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write Lack of Reentrancy

Guard, No Events for
Function, Potential for

Large Gas Fees Due to
Token Minting

Refer Audit
Findings

15 burn write Burn Function Doesn't
Restrict to Owner, Lack
of Reentrancy Guard,

No Events for
Function, Potential for

Large Gas Fees Due to
Token Burning

Refer Audit
Findings

16 _transfer internal Passed No Issue
17 _mint internal Passed No Issue
18 _burn internal Passed No Issue
19 _approve internal Passed No Issue
20 _burnFrom internal Passed No Issue
21 owner read Passed No Issue
22 onlyOwner modifier Passed No Issue
23 renounceOwnership write access only Owner No Issue
24 transferOwnership write access only Owner No Issue
25 _transferOwnership internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss, etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g., public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens being lost

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, which can’t have a significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

(1) Burn Function Doesn't Restrict to Owner:

The burn() function can be called by any user, allowing anyone to burn tokens from their

own balance. While this may be intended, if the token supply is controlled centrally (like in

many tokens), this can create vulnerabilities by allowing users to burn tokens arbitrarily.

Resolution: Restrict the burn() function to only the owner or specific roles, unless it's an

intentional feature to allow anyone to burn tokens.

(2) Lack of Reentrancy Guard:

The contract does not have a reentrancy guard in place, which is essential to prevent

reentrancy attacks, especially in token transfer and mint/burn functions.

Resolution: Implement the ReentrancyGuard modifier from OpenZeppelin or custom

reentrancy protection for functions such as transfer(), mint(), and burn().

(3) No Events for mint() and burn() Functions:

The mint() and burn() functions don't emit events, making it harder to track the changes to

the total supply and individual token balances. This can make it difficult for users or other

systems to interact with the contract.

Resolution: Emit events for minting and burning activities (Mint() and Burn()) to ensure

transparency and easier tracking on-chain.

Very Low / Informational / Best practices:

(1) Potential for Large Gas Fees Due to Token Minting and Burning:

Both mint() and burn() functions involve increasing or decreasing the total supply, which

could result in high gas fees if not carefully optimized.

Resolution: Reassess the need for continuous minting or burning. Introduce batch

operations to allow more gas-efficient transactions when minting or burning tokens.

(2) Contract Versioning:

The contract uses Solidity version 0.5.16, which is quite outdated. Newer versions of

Solidity have numerous improvements in terms of security, gas efficiency, and features.

Resolution: Upgrade the Solidity version to the latest stable release (currently Solidity

0.8.x) and ensure compatibility with existing features.

(3) Unused _allowances Mapping:

The _allowances mapping and related functions (approve, allowance, transferFrom) are

included in the contract but are not used as extensively as they could be, which might

introduce unnecessary complexity and higher gas costs.

Resolution: Review the need for allowance functionality in this contract. If it's not needed,

remove these functions and mappings to simplify the contract and reduce gas

consumption.

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet's private key is compromised, then it creates trouble. The following are

Admin functions:

BEP20XRP.sol
● mint: The owner can create `amount` tokens and assign them to `msg.sender`,

increasing the total supply.

Conclusion

We were given a contract code in the form of bscscan.com web links. We have used all

possible tests based on the given objects as files. We observed 3 low and 3 informational

issues in the smart contract, and those issues are not critical. So, it’s good to go for
production.

Since possible test cases can be unlimited for such smart contract protocols, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on the standard audit procedure

scope, is “Secured”.

https://bscscan.com/token/0x1d2f0da169ceb9fc7b3144628db156f3f6c60dbe#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's website to get a high-level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early, even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation are an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract by the best industry practices at the
date of this report, about: cybersecurity vulnerabilities and issues in smart contract source
code, the details of which are disclosed in this report, (Source Code); the Source Code
compilation, deployment and functionality (performing the intended functions).

Since the total number of test cases is unlimited, the audit makes no statements or
warranties on the security of the code. It also cannot be considered as a sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other
statements of the contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on this report only. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - XRP Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We analyzed the project altogether. Below are the results.

Slither Log >> BEP20XRP.sol

NFO:Detectors:
BEP20XRP.allowance(address,address).owner (BEP20XRP.sol#423) shadows:
 - Ownable.owner() (BEP20XRP.sol#301-303) (function)
BEP20XRP._approve(address,address,uint256).owner (BEP20XRP.sol#586) shadows:
 - Ownable.owner() (BEP20XRP.sol#301-303) (function)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
BEP20XRP._burnFrom(address,uint256) (BEP20XRP.sol#600-603) is never used and should be
removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Version constraint 0.5.16 contains known severe issues
(https://solidity.readthedocs.io/en/latest/bugs.html)
 - AbiReencodingHeadOverflowWithStaticArrayCleanup
 - DirtyBytesArrayToStorage
 - NestedCalldataArrayAbiReencodingSizeValidation
 - ABIDecodeTwoDimensionalArrayMemory
 - KeccakCaching
 - EmptyByteArrayCopy
 - DynamicArrayCleanup
 - MissingEscapingInFormatting
 - ImplicitConstructorCallvalueCheck
 - TupleAssignmentMultiStackSlotComponents
 - MemoryArrayCreationOverflow
 - privateCanBeOverridden.
It is used by:
 - 0.5.16 (BEP20XRP.sol#5)
solc-0.5.16 is an outdated solc version. Use a more recent version (at least 0.8.0), if possible.
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

INFO:Detectors:
Variable BEP20XRP._decimals (BEP20XRP.sol#351) is not in mixedCase
Variable BEP20XRP._symbol (BEP20XRP.sol#352) is not in mixedCase
Variable BEP20XRP._name (BEP20XRP.sol#353) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
Redundant expression "this (BEP20XRP.sol#118)" inContext (BEP20XRP.sol#108-121)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Slither:BEP20XRP.sol analyzed (5 contracts with 93 detectors), 10 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

BEP20XRP.sol

Gas costs:
Gas requirement of function BEP20XRP.mint is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 501:2:

Gas costs:
Gas requirement of function BEP20XRP.burn is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 509:2:

ERC20:
ERC20 contract's "decimals" function should have "uint8" as return type
Pos: 375:2:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 176:4:

Solhint Linter

Solhint Linters are the utility tools that analyze the given source code and report

programming errors, bugs, and stylistic errors. For the Solidity language, there are some

linter tools available that a developer can use to improve the quality of their Solidity

contracts.

BEP20XRP.sol

Code contains empty blocks
Pos: 27:110
Error message for require is too long
Pos: 5:199
Error message for require is too long
Pos: 5:336
Error message for require is too long
Pos: 5:528
Error message for require is too long
Pos: 5:529
Error message for require is too long
Pos: 5:565
Error message for require is too long
Pos: 5:586
Error message for require is too long
Pos: 5:587

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

	Key Features:

