

​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​

 Project: TFY Liquid Staking Token
 Website: thirdfy.com

​ ​ ​ Platform: Base Sepolia Network
 Language: Solidity

​ ​ ​ ​ ​ Date:​ July 22nd, 2025

https://thirdfy.com/

Table of contents

Introduction ………………………………………………………………………………………​4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 7

Claimed Smart Contract Features …………………………………………………………….. 9

Audit Summary ……………....…………………………………………………………………..22

Technical Quick Stats …..……………………………………………………………………… ​23

Business Risk Analysis …..…………………………………………………………………… ​24

Code Quality ……………………………………………………………………………………. ​25

Documentation ………………………………………………………………………………….. 25

Use of Dependencies ……………………………………………………………………………​25

AS-IS overview ………………………………………………………………………………….. 26

Severity Definitions ……………………………………………………………………………...​ 40

Audit Findings …………………………………………………………………………………… ​41

Conclusion ………………………………………………………………………………………. 52

Our Methodology ………………………………………………………………………………... 53

Disclaimers ……………………………………………………………………………………….​55

Appendix

●​ Code Flow Diagram ……………………………………………………………………... 56

●​ Slither Results Log ………………………………………………………………………. 72

●​ Solidity static analysis ….……………………………………………………………….. 81

●​ Solhint Linter …………………………………………………………………….……….. 90

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction

EtherAuthority was contacted by the Thirdfy team to perform a security audit of the o33
Protocol smart contract’s code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on July 22nd, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

●​ The o33 Protocol Contracts handle multiple contracts, and all contracts have

different functions.

○​ o33: The o33 contract is a liquid staking wrapper for xTFY, enabling

auto-compounding of rewards, delegated voting, and bribe claiming. It

integrates with external vote and reward modules, supports gasless

meta-transactions, and includes security measures like epoch locks and

whitelisted aggregators.

○​ xTFY: The xTFY is a yield-bearing ERC20 token representing staked TFY

with slashing and vesting mechanics. It enables emissions conversion,

vesting-based exit strategies, rebasing via a VoteModule, and transfer

restrictions to ensure governance control. The contract also supports pause

control, migration, and rescue functionalities via the ACCESS_HUB.

○​ VoterV4: The VoterV4 is the core governance contract of the TFY protocol

that manages voting, emissions distribution, and gauge control. It supports

legacy, concentrated liquidity (CL), and Ichi Vault gauges with UUPS

upgradability, delegation, and per-period vote accounting. It integrates with

the xTFY staking token and VoteModule for modular governance.

○​ AccessHub: AccessHub is the central governance and access control

contract for the TFY Protocol, using UUPS upgradeability and

OpenZeppelin's role-based permissions. It coordinates core modules like

Voter, xTFY, Minter, o33, and VoteModule, and enables secure execution,

upgrades, parameter management, and emergency actions through a

timelock-controlled system.

○​ FeeCollector: FeeCollector is a fee aggregation and distribution contract for

Algebra-based pools within the TFY Protocol. It collects protocol fees from

pools, splits them between the treasury and gauge-linked fee distributors,

and supports withdrawals from the AlgebraCommunityVault under role-based

permissions. It provides granular event logging and safeguards for treasury

and voter-controlled operations.

○​ IchiBribeDistributor: IchiBribeDistributor manages the deposit and

distribution of bribes for a specific IchiVaultGauge based on user voting

weights. Bribes are deposited for upcoming voting periods and later claimed

by voters proportionally to their vote share. The contract ensures only the

authorized VoterV4 can submit vote weights and enforces token whitelisting

for bribes.

○​ IchiVaultGauge: IchiVaultGauge manages time-weighted reward distribution

to users based on their participation in paired Ichi Vaults during each reward

period (weekly). It allows a designated recorder to submit user

"share-seconds" data off-chain and supports both voter-notified and

externally deposited rewards. Whitelisted tokens can be used as rewards,

and users can claim them per completed period.

○​ Minter: Minter handles the emission schedule for the TFY token, minting

weekly rewards with a configurable growth/decay multiplier and enforcing a

max supply cap. It interacts with a Voter contract to distribute emissions and

can trigger a rebase in the xTFY contract. Governance can adjust the

emissions multiplier with a 25% per-epoch deviation limit.

○​ PositionOracle: PositionOracle feeds time-in-range data of Uniswap V3

NFT positions to the Voter contract for use in gauges. It supports normal and

fallback modes for data submission, with role-based access for an operator

and emergency admin. The contract ensures batch-safe updates, enabling

accurate reward distribution even in subgraph or data feed failures.

○​ RevenueToRebaseManager: RevenueToRebaseManager automates the

weekly distribution of protocol revenue by burning a portion of TFY tokens

and rebasing the rest to stakers. It supports community governance to

override distribution ratios per epoch, uses UUPS upgradeability, and

enforces security via access control, reentrancy protection, and emergency

pause mechanisms.

○​ Thirdfy: Thirdfy is a mintable, burnable ERC20 token with permit support,

designed for the TFY protocol’s emissions system. It restricts minting access

to a designated minter contract, which typically handles weekly emissions

based on governance decisions.

○​ ThirdfyTimelock: ThirdfyTimelock is a governance contract extending

OpenZeppelin’s TimelockController, used to manage delayed execution of

proposals within the TFY protocol. It ensures secure and transparent

upgrades or parameter changes by enforcing a minimum delay between

proposal approval and execution.

○​ VoteModule: VoteModule is the TFY Protocol's core staking contract,

enabling xTFY deposits for voting power and dual reward streams. It

securely distributes both protocol emissions (rebase rewards) and external

revenue rewards, with cooldown protection, delegation support, and robust

access control via AccessHub.

○​ ClGaugeFactory: The ClGaugeFactory is a governance-controlled factory

contract for deploying and managing Concentrated Liquidity (CL) gauge

contracts within the TFY Protocol. It handles role assignments (voter,

nfpManager, accessHub) and maintains a registry of created gauges.

○​ IchiBribeDistributorFactory: The IchiBribeDistributorFactory is a UUPS

upgradeable factory contract used to deploy IchiBribeDistributor instances for

distributing bribes to gauges. It includes access control via AccessHub,

supports governance via VoterV4, and tracks the initial implementation

address.

○​ IchiVaultGaugeFactory: The IchiVaultGaugeFactory is a UUPS

upgradeable factory contract for deploying IchiVaultGauge instances linked

to Ichi Vault pairs. It supports secure role-based access via AccessHub and

VoterV4, and ensures controlled gauge creation with event logging and

upgrade flexibility.

●​ This audit scope has included 16 smart contract files, 18 interface files, and 4

libraries files.

●​ The o33 Token contracts inherit the Initializable, UUPSUpgradeable, ERC20,

IERC20, Pausable, Math, EnumerableSet, ERC4626, SafeERC20,

ReentrancyGuard, ReentrancyGuardUpgradeable, TimelockController

,ERC20Burnable, ERC20Permit, Ownable, AccessControlEnumerableUpgradeable

standard smart contracts from the OpenZeppelin library.

●​ These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
o33 Token Smart Contracts

Platform Base Sepolia Network

Language Solidity

File 1 o33.sol

File 1 MD5 hash DAF54C8F51BE891EBF9CF38FABD75092

File 2 xTFY.sol

File 2 MD5 hash 3308E3B86EE2CAF4A4C27257DA65A31B

File 3 VoterV4.sol

File 3 MD5 hash 1018D3920C0D2AD09B3EF6DC44C28A01

File 4 AccessHub.sol

File 4 MD5 hash 61CE0333E6840CA58AA0D91977975B04

Updated File 4 MD5 hash BCB5BE0F967E8CC3C350FAB9B284E5D8

File 5 FeeCollector.sol

File 5 MD5 hash CE78073E427CB77301F1369FF4F8DE44

File 6 IchiBribeDistributor.sol

File 6 MD5 hash B890A22058217EF23372B3C9FFA4F8A1

File 7 IchiVaultGauge.sol

File 7 MD5 hash 44EE8CE6F9BFF6C03405A527C2110512

File 8 Minter.sol

File 8 MD5 hash D8CBD5595D732E4601E0D3B6AC2D8AA0

Updated File 8 MD5 hash DC773CA7C0F4420F5A04B55B6F638580

File 9 PositionOracle.sol

File 9 MD5 hash E37C22DDFA583EF3CABE3F63FD96D035

File 10 RevenueToRebaseManager.sol

File 10 MD5 hash B3EA4C080F115A027AC2CDDDA16EFF92

File 11 Thirdfy.sol

File 11 MD5 hash 2A47D658BD2E25CA2A5BD43E41D39B6A

File 12 ThirdfyTimelock.sol

File 12 MD5 hash E12440DE058B29A0CDA591779D9CE314

File 13 VoteModule.sol

File 13 MD5 hash ACE9AC889075680456FC8F226894EDF6

File 14 ClGaugeFactory.sol

File 14 MD5 hash 5CE0D77F39BECBE953849F2537E43E08

File 15 IchiBribeDistributorFactory.sol

File 15 MD5 hash D2B9C569078F340B42E5F04FAA5DA131

File 16 IchiVaultGaugeFactory.sol

File 16 MD5 hash 30818913707082F7ACB58AEB914CF031

Audit Date July 22nd, 2025

Revised Audit Date August 7th, 2025

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1: o33.sol
Tokenomics:

●​ Name: TFY Liquid Staking Token

●​ Symbol: o33

o33 Smart Contract – Key Features:

●​ ERC4626 Vault: Wraps xTFY as a yield-bearing token o33.

●​ Autocompounding: Converts TFY emissions → xTFY →

deposits into VoteModule.

●​ Voting Integration: Submits votes via a Voter each epoch

for protocol optimization.

●​ Rebase Handling: Claims and compounds TFY rebases

into staked xTFY.

●​ Incentive Claiming: Collects rewards via FeeDistributors.

●​ Token Swapping: Swaps non-TFY rewards to TFY using

whitelisted aggregators.

●​ Meta-Transactions: Supports gasless user interactions via

relayer signatures.

●​ Access Control: operator executes logic, accessHub

governs admin functions.

●​ Epoch Locking: Disables deposits/withdrawals near epoch

flips to prevent exploits.

●​ Rescue Mechanism: Safely extracts non-core tokens

without affecting staking state.

●​ Whitelisting: Controlled access for aggregators and

relayers.

YES, This is
valid.

File 2: xTFY.sol
Tokenomics:

●​ Name: xTFY

YES, This is
valid.

●​ Symbol: xTFY

●​ BASIS: Denotes the denominator for basis point calculations

(10,000 = 100%).

●​ SLASHING_PENALTY: Represents a 50% penalty (5000 /

10,000) applied during slashing events.

●​ MIN_VEST: Minimum vesting duration set to 14 days.

●​ MAX_VEST: Maximum vesting duration set to 180 days.

xTFY Smart Contract – Key Features:

●​ Staking Token: Represents staked TFY with rebasing and

vesting logic.

●​ Minting: TFY → xTFY via convertEmissionsToken().

●​ Vesting System: Supports vest creation and linear vest

exits with penalties.

●​ Instant Exit: Exit with 50% slashing penalty (exit()).

●​ Rebase Engine: Emits rewards to VoteModule each epoch

or via emergency.

●​ Transfer Restrictions: Enforced via whitelists (exempt,

exemptTo).

●​ Governance Controls: Timelocked control over operator,

pausing, exemptions, and token rescue.

●​ Pause/Unpause: Emergency control for system safety.

File 3: VoterV4.sol
VoterV4 Contract:

●​ Gauge Management:
○​ Supports Legacy, CL, and IchiVault gauge types.

○​ Maps pools ↔ gauges.

●​ Voting System:

○​ Epoch-based vote casting with power delegation.

○​ Vote resets, pokes, and revoting supported.

●​ Emissions Distribution:

○​ Distributes TFY and xTFY to active gauges.

YES, This is
valid.

○​ Separate logic for IchiVault vs CL/legacy gauges.

●​ Bribe Support:
○​ Integrates with IchiVault Bribe Distributors.

●​ Admin Functions:

○​ Set factories, fee collectors, launcher plugin.

○​ Set global xTFY:TFY emission split ratio.

●​ Upgradeable via UUPS,

○​ with controlled access via AccessHub and governor.

File 4: AccessHub.sol
AccessHub – Key Features:

●​ Role-Based Governance — Uses AccessControl with

timelock and operator roles.

●​ UUPS Upgradeable — Secure and upgradeable via

DEFAULT_ADMIN_ROLE.

●​ Centralized Module Control — Manages Voter, xTFY,

Minter, o33, VoteModule.

●​ Secure Execution — Timelock can execute arbitrary calls

on whitelisted targets.

●​ Voter Management — Set governor, whitelist tokens, reset

inactive voters.

●​ xTFY Ops — Pause/unpause, redeem, migrate operator,

rescue tokens.

●​ VoteModule Tuning — Adjust cooldowns, rebase stream

duration.

●​ Quick Reinit — Easily rewire all dependencies

post-deployment.

YES, This is
valid.

File 5: FeeCollector.sol
FeeCollector – Key Features:

●​ Treasury Management
○​ Configurable treasury address and treasuryFees (in

basis points).

YES, This is
valid.

○​ Safely collects treasury shares before fee distribution.

●​ Protocol Fee Collection
○​ Collects fees from Algebra pools via

collectProtocolFees.

○​ Handles dead/no gauge gracefully by routing fees to

the treasury.

●​ Voter Integration
○​ Read gauge info from IVoter.

○​ Only voters can update the fee distributor or trigger

vault withdrawals.

●​ Algebra Integration
○​ Collects via AlgebraPool.collectProtocolFees.

○​ Withdraws tokens from AlgebraCommunityVault

(single & batch).

●​ Robust Debugging
○​ Emits detailed Debug* events at every step for

transparency.

○​ Captures success/failure in transfers and role checks.

●​ Role-Based Access
○​ onlyTreasury and onlyVoter modifiers.

○​ Checks Algebra factory role

(FACTORY_WITHDRAWER_ROLE) for vault access.

●​ Modular Token Handling
○​ Uses SafeERC20 for secure transfers.

○​ Transfers remaining fees to feeDist after treasury cut.

File 6: IchiBribeDistributor.sol
Tokenomics:

●​ DURATION: Defines the length of a voting or bribe epoch,

set to 7 days (1 week).

IchiBribeDistributor – Key Features :
●​ Bribe Deposits

YES, This is
valid.

○​ Accepts bribes for the next voting period.

○​ Only accepts whitelisted tokens via VoterV4.

○​ Tracked by totalBribeForPeriod.

●​ Vote-Based Rewards
○​ Users earn bribes based on vote weight per period.

○​ earned() calculates unclaimed rewards.

○​ Claims via claimBribes(tokens, periods).

●​ Secure Distribution
○​ Tracks:

■​ totalWeightForPeriod

■​ userWeightForPeriod

■​ claimedBribes

■​ Prevents double-claiming or over-claiming

●​ Epoch Control
○​ Periods are 1 week (7 days).

○​ Rewards can only be claimed for past periods.

●​ VoterV4 Integration
○​ Only VoterV4 can call _depositVoteWeight().

○​ Updates user + total weights for upcoming epochs.

●​ Security
○​ Uses ReentrancyGuard and SafeERC20.

○​ Reverts on:

■​ Zero deposit

■​ Invalid period

■​ Nothing to claim

■​ Mismatched input arrays

●​ Transparent & Modular
○​ All states are exposed via public mappings/interfaces.

○​ Clean separation of deposit, claim, and vote logic.

File 7: IchiVaultGauge.sol
IchiVaultGauge – Key Features:

●​ Reward Distribution Based on Share-Seconds

YES, This is
valid.

○​ Uses time-weighted vault shares ("share-seconds") to

calculate user rewards per epoch.

○​ Reward logic recorded off-chain via

recordShareSeconds() by a shareRecorder.

●​ Epoch-Based Rewarding
○​ Rewards are distributed per period (1 week).

○​ Period data must be recorded after the period ends.

●​ Vault & LP Rewards:
●​ Users can:

○​ Earn rewards based on IchiVault staking.

○​ Claim rewards via claimRewardsForPeriod.

●​ Third parties can:

○​ Deposit external LP rewards for the current

period using depositExternalLPReward().

●​ Permissions & Access Control:
○​ shareRecorder: Authorized to record user

share-seconds.

○​ voter & accessHub: Can whitelist reward tokens,

update recorder, etc.

○​ Rewards can only be distributed in whitelisted tokens.

●​ Tracking & Claiming
○​ Tracks:

■​ totalRewardByPeriod

■​ userShareSecondsByPeriod

■​ claimedRewards

○​ earnedForVaultShares() returns claimable rewards for

user/token/period.

●​ Dynamic Whitelisting
○​ Admin can add/remove whitelisted reward tokens

using:

■​ whitelistReward()

■​ removeRewardWhitelist()

○​ Only whitelisted tokens can be deposited or notified.

●​ Safe Transfers
○​ Uses _safeTransfer and _safeTransferFrom with

explicit contract code checks and low-level call

protection.

File 8: Minter.sol
Tokenomics:

●​ BASIS: Used as the denominator for percentage math.

●​ MAX_DEVIATION: Caps changes to 25% per epoch.

●​ INITIAL_SUPPLY: Sets the initial token supply to 500 million

TFY.

●​ MAX_SUPPLY: Sets the maximum cap of TFY tokens to 1.5

billion.

Minter Contract – Key Features:
●​ One-time Initialization

○​ Sets TFY token, xTFY, voter, emissions, and mints

initial supply.

●​ Start Emissions
○​ Begins weekly emissions from epoch 0 and sets

timing variables.

●​ Weekly Emissions Update
○​ Mints emit each new epoch, notify the voter, and

trigger xTFY.rebase().

●​ Dynamic Emission Control
○​ Allows governance to adjust emissions multiplier

(max ±25% per epoch).

●​ Emissions Cap Enforcement
○​ Ensures total TFY supply does not exceed 1.5B

tokens.

●​ Epoch & Period Tracking
○​ Calculates current period and epoch using

block.timestamp / 1 weeks.

YES, This is
valid.

●​ Access Control
○​ kickoff and startEmissions: only operator.

○​ updateEmissionsMultiplier: only accessHub.

●​ Auto-Rebase Trigger
○​ Calls xTFY.rebase() after emissions each epoch.

File 9: PositionOracle.sol
PositionOracle – Key Features:

●​ Submit LP position data to Voter contract.

●​ Batch data submission for multiple pools and epochs.

●​ Fallback mode for emergency use (simulates

time-in-range).

●​ Adjustable fallback factor (default 80% of full range).

●​ Role-based access:

○​ operator: submits data.

○​ voter: sets roles.

○​ emergencyAdmin: handles fallback mode.

●​ Tracks last update timestamp for monitoring.

●​ Emits events for transparency and auditability.

YES, This is
valid.

File 10: RevenueToRebaseManager.sol
Tokenomics:

●​ COLLECTION_INTERVAL: Sets a 7-day minimum gap

between fee/revenue collections.

●​ VOTING_DURATION: Duration of voting window per

proposal (4 days).

●​ MIN_VOTES_REQUIRED: Minimum 10,000 xTFY needed

for proposal to pass.

●​ MIN_PROPOSAL_THRESHOLD: Requires at least 1,000

xTFY to submit a proposal.

●​ PROPOSAL_REPLACEMENT_THRESHOLD: Needs 5,000

xTFY to replace an active proposal.

YES, This is
valid.

RevenueToRebaseManager – Key Features:
●​ Automated TFY Revenue Processing

○​ Collects and distributes TFY revenue weekly:​

 → Burn (deflation) + Rebase (staker rewards).
●​ Default 50/50 Burn/Rebase Split

○​ With support for community-governed overrides.

●​ Governance Proposals
○​ xTFY holders can propose and vote on custom

distribution ratios per epoch.

●​ Rebase Execution
○​ Sends rewards to VoteModule to distribute as

external revenue.

●​ Burn Execution
○​ Burns TFY by transferring to 0x...dEaD.

●​ Role-Controlled Access
○​ operator: triggers revenue execution.

○​ accessHub: governance authority.

●​ Weekly Collection Interval
○​ Enforces a 7-day delay between distributions.

●​ Emergency Pause
○​ Halts revenue execution in critical situations.

●​ Analytics Tracking
○​ Tracks burned, rebased, and collected amounts per

period and in total.

●​ UUPS Upgradeable
○​ Supports secure future upgrades with

_authorizeUpgrade.

File 11: Thirdfy.sol
Thirdfy (TFY Token) – Key Features:

●​ Mintable ERC20 Token
○​ TFY token with mint() restricted to a designated

minter (e.g., Minter contract).

YES, This is
valid.

●​ Burnable
○​ Supports burn() and burnFrom() via ERC20Burnable.

●​ EIP-2612 Permit Support
○​ Gasless approvals via ERC20Permit (signed

approvals).

●​ Access-Controlled Minting
○​ Only the minter address can call mint().

●​ Token Metadata
○​ Name: TFY

○​ Symbol: TFY

○​ Decimals: 18 (default)

File 12: ThirdfyTimelock.sol
ThirdfyTimelock – Key Features:

●​ Time-locked Governance Execution
○​ Delays sensitive actions to allow community review

(via minDelay).

●​ Access Roles
○​ proposers: Can queue proposals.

○​ executors: Can execute approved proposals.

○​ admin: Initial administrator with setup control.

●​ Inherits OpenZeppelin’s Timelock Controller
○​ Secure, battle-tested governance time-lock

implementation.

●​ Used with Governor Contracts
○​ Typically paired with on-chain voting for decentralized

governance.

YES, This is
valid.

File 13: VoteModule.sol
Tokenomics:

●​ duration: Rebases are streamed over a 30-minute period

once initiated.

●​ cooldown: A 12-hour lock period before a user can claim

rebase rewards.

YES, This is
valid.

●​ PRECISION: Standard decimal precision set to 1e18 for

fixed-point calculations.

VoteModule – Key Features:

●​ Core Role:

○​ Main staking and reward distribution contract for the

TFY Protocol.

●​ Staking Mechanics
○​ Users stake xTFY to gain voting power and earn

rewards.

○​ Tracks balances, total supply, and delegation.

 Dual Reward Streams

1.​ Rebase Rewards (from xTFY emissions):

○​ Streamed over time via notifyRewardAmount().

2.​ External Revenue Rewards (from protocol revenue):

○​ Sent via notifyExternalRevenue() by

RevenueToRebaseManager.

Time-Locked Mechanics

●​ 30-minute streaming duration (duration) for emissions.

●​ 12-hour cooldown before withdrawal or restaking

(cooldown).

●​ unlockTime prevents reward gaming during rebase events.

 Security & Safety

●​ Immutable staking contract—user funds can’t be seized

via governance.

●​ ReentrancyGuard protection on all state-changing logic.

●​ Cooldown exemption managed via AccessHub.

●​ Safe initialization of new external reward users.

●​ External rewards can be toggled off for safety.

Governance Integration

●​ Automatically calls voter.poke() on deposit/withdraw.

●​ Supports delegation and admin setting for UX.

Accurate Accounting

●​ Per-user tracking for:

○​ rewardPerTokenStored.

○​ externalRewardPerTokenStored.

●​ Claim both rewards using getReward().

File 14: ClGaugeFactory.sol
ClGaugeFactory – Key Features:

Purpose:

●​ Factory for creating Concentrated Liquidity (CL) Gauges

used in the TFY Protocol.

●​ Manages gauge metadata and access control.

Core State Variables

●​ voter: Governance contract allowed to control gauge

creation/settings.

●​ nfpManager: (To be used) likely for managing NFT-based

LP positions (e.g. Uniswap V3).

●​ accessHub: Access control contract for broader protocol

permissions.

●​ lastGauge: Tracks the most recently created gauge.

●​ gauges: Array of all deployed CL gauge addresses.

YES, This is
valid.

File 15: IchiBribeDistributorFactory.sol
 Key Features:

●​ Factory for deploying IchiBribeDistributor contracts.

YES, This is
valid.

●​ Access-controlled via AccessHub and Voter.

●​ Upgradeable via UUPS pattern (only AccessHub can

upgrade).

●​ Tracks implementation (first deployed distributor).

●​ Emits event on each distributor deployment.

●​ Deployment safety checks for zero addresses.

●​ Admin functions for updating voter, accessHub, and

implementation.

File 16: IchiVaultGaugeFactory.sol
Key Features:

●​ Factory for deploying IchiVaultGauge contracts.

●​ Access-controlled via AccessHub and VoterV4.

●​ Upgradeable using UUPS pattern (authorized by

AccessHub).

●​ Gauge creation with paired Ichi Vaults and snapshot

recorder.

●​ Tracks lastGauge deployed for indexing or automation.

●​ Events emitted on gauge creation and admin changes.

●​ Safety checks for zero address and access control.

YES, This is
valid.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

​ ​ ​ ​ You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 1 high, 0 medium, 7 low, and 1 very low-level issues.
We confirm that all issues are fixed in the revised smart contracts code.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack a check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks an event log Passed

Human/contract checks bypass Passed
Random number generation/use vulnerability N/A

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis - o33.sol

Overall Audit Result: PASSED

Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax Not Detected

Fee Check No

Is Honeypot Not Detected

Trading Cooldown No

Can Pause Trade? No

Pause Transfer? Partial
(Transfers aren’t explicitly pausable, but deposit() is

gated by whileNotLocked)

Max Tax? No

Is it Anti-whale? No

Is Anti-bot? No

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes
(Ownership isn’t defined via Ownable, but Operator

can be transferred via transferOperator() by
accessHub)

Hidden Owner? No

Self Destruction? Not Detected

Auditor Confidence High

Code Quality

This audit scope has included 16 smart contract files, 18 interface files, and 4 library files.

Smart contracts contain Libraries, Smart contracts, inheritance, and Interfaces. This is a

compact and well-written smart contract.

The libraries in o33 Protocol are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address, and its properties/methods can be reused many times by

other contracts in the o33 Protocol.

The Thirdfy team has provided scenarios and unit test scripts, which have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an o33 Protocol smart contract code in the form of a file. The MD5 hash of

that code is mentioned in the table above.

As mentioned above, code parts are well-commented. And the logic is straightforward. So

it is easy to quickly understand the programming flow as well as the complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contracts infrastructure are based

on well-known industry-standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

o33.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 whileNotLocked modifier Passed No Issue
3 onlyOperator modifier Passed No Issue
4 onlyAccessHub modifier Passed No Issue
5 submitVotes external access only

Operator
No Issue

6 compound external access only
Operator

No Issue

7 claimRebase external access only
Operator

No Issue

8 claimIncentives external access only
Operator

No Issue

9 swapIncentiveViaAggregator external access only
Operator

No Issue

10 rescue external access only
AccessHub

No Issue

11 unlock external access only
Operator

No Issue

12 transferOperator external access only
AccessHub

No Issue

13 whitelistAggregator external access only
AccessHub

No Issue

14 whitelistRelayer external access only
AccessHub

No Issue

15 executeMetaTransaction write Passed No Issue
16 totalAssets read Passed No Issue
17 ratio read Passed No Issue
18 getPeriod read Passed No Issue
19 isUnlocked read Passed No Issue
20 isCooldownActive read Passed No Issue
21 _deposit internal whileNotLocked No Issue
22 _withdraw internal Passed No Issue
23 _tryGetAssetDecimals read Passed No Issue
24 decimals read Passed No Issue
25 asset read Passed No Issue
26 totalAssets read Passed No Issue
27 convertToShares read Passed No Issue
28 convertToAssets read Passed No Issue
29 maxDeposit read Passed No Issue
30 maxMint read Passed No Issue
31 maxWithdraw read Passed No Issue

32 maxRedeem read Passed No Issue
33 previewDeposit read Passed No Issue
34 previewMint read Passed No Issue
35 previewWithdraw read Passed No Issue
36 previewRedeem read Passed No Issue
37 deposit write Passed No Issue
38 mint write Passed No Issue
39 withdraw write Passed No Issue
40 redeem write Passed No Issue
41 _convertToShares internal Passed No Issue
42 _convertToAssets internal Passed No Issue
43 _deposit internal Passed No Issue
44 _withdraw internal Passed No Issue
45 _decimalsOffset internal Passed No Issue
46 nonReentrant modifier Passed No Issue
47 _nonReentrantBefore write Passed No Issue
48 _nonReentrantAfter write Passed No Issue
49 _reentrancyGuardEntered internal Passed No Issue

xTFY.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyGovernance modifier Passed No Issue
3 pause external access only

Governance
No Issue

4 unpause external access only
Governance

No Issue

5 _update internal Passed No Issue
6 _isExempted internal Passed No Issue
7 convertEmissionsToken external whenNotPaused No Issue
8 rebase external whenNotPaused No Issue
9 emergencyRebase external access only

Governance
No Issue

10 exit external Passed No Issue
11 createVest external Passed No Issue
12 exitVest external Passed No Issue
13 operatorRedeem external access only

Governance
No Issue

14 rescueTrappedTokens external access only
Governance

No Issue

15 migrateOperator external access only
Governance

No Issue

16 setExemption external access only
Governance

No Issue

17 setExemptionTo external access only
Governance

No Issue

18 getBalanceResiding read Passed No Issue
19 usersTotalVests read Passed No Issue
20 getVestInfo read Passed No Issue
21 isExempt external Passed No Issue
22 tfy external Passed No Issue
23 name read Passed No Issue
24 symbol read Passed No Issue
25 decimals read Passed No Issue
26 totalSupply read Passed No Issue
27 balanceOf read Passed No Issue
28 transfer write Passed No Issue
29 allowance read Passed No Issue
30 approve write Passed No Issue
31 transferFrom write Passed No Issue
32 _transfer internal Passed No Issue
33 _update internal Passed No Issue
34 _mint internal Passed No Issue
35 _burn internal Passed No Issue
36 _approve internal Passed No Issue
37 _approve internal Passed No Issue
38 _spendAllowance internal Passed No Issue
39 whenNotPaused modifier Passed No Issue
40 whenPaused modifier Passed No Issue
41 paused read Passed No Issue
42 _requireNotPaused internal Passed No Issue
43 _requirePaused internal Passed No Issue
44 _pause internal Passed No Issue
45 _unpause internal Passed No Issue

VoterV4.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyGovernance modifier Passed No Issue
3 initialize external initializer No Issue
4 _authorizeUpgrade internal access only

Governance
No Issue

5 setFeeCollector external Passed No Issue
6 setIchiVaultGaugeFactory external access only

Governance
No Issue

7 setIchiBribeDistributorFactory external access only
Governance

No Issue

8 setGlobalRatio external access only
Governance

No Issue

9 setLauncherPlugin external access only
Governance

No Issue

10 reset external Passed No Issue
11 _reset internal Passed No Issue
12 poke external Passed No Issue
13 vote external Passed No Issue
14 _vote internal Passed No Issue
15 _distribute internal Passed No Issue
16 getVotes external Passed No Issue
17 setGovernor external access only

Governance
No Issue

18 whitelist write Passed No Issue
19 revokeWhitelist write Passed No Issue
20 killGauge write access only

Governance
No Issue

21 reviveGauge write access only
Governance

No Issue

22 stuckEmissionsRecovery external access only
Governance

No Issue

23 whitelistGaugeRewards external access only
Governance

No Issue

24 removeGaugeRewardWhitelist external access only
Governance

No Issue

25 removeFeeDistributorReward external Passed No Issue
26 setMainTickSpacing external Passed No Issue
27 getPeriod read Passed No Issue
28 createCLGauge external access only

Governance
No Issue

29 _createGaugeForCLPool internal Passed No Issue
30 claimClGaugeRewards external Passed Fixed
31 claimIncentives external Passed No Issue
32 claimRewards external Passed Fixed
33 notifyRewardAmount external Passed No Issue
34 distribute write nonReentrant No Issue
35 distributeForPeriod write nonReentrant No Issue
36 distributeAll external Passed No Issue
37 batchDistributeByIndex external Passed No Issue
38 getAllGauges external Passed No Issue
39 getAllFeeDistributors external Passed No Issue
40 isGauge external Passed No Issue
41 isFeeDistributor external Passed No Issue
42 _claimablePerPeriod internal Passed No Issue
43 withdrawFromCommunityVault external access only

Governance
No Issue

44 withdrawMultipleFromCommun
ityVault

external access only
Governance

No Issue

45 recordPositionsTimeInRange external Passed No Issue

46 setOracleApproval external access only
Governance

No Issue

47 setPositionOracle external access only
Governance

No Issue

48 setOracleOperator external Passed No Issue
49 createIchiVaultGauge external access only

Governance
No Issue

50 setShareRecorder external access only
Governance

No Issue

51 initializer modifier Passed No Issue
52 reinitializer modifier Passed No Issue
53 onlyInitializing modifier Passed No Issue
54 _checkInitializing internal Passed No Issue
55 _disableInitializers internal Passed No Issue
56 _getInitializedVersion internal Passed No Issue
57 _isInitializing internal Passed No Issue
58 _initializableStorageSlot internal Passed No Issue
59 _getInitializableStorage write Passed No Issue
60 _getReentrancyGuardStorage write Passed No Issue
61 __ReentrancyGuard_init internal access only

Initializing
No Issue

62 __ReentrancyGuard_init_unch
ained

internal access only
Initializing

No Issue

63 nonReentrant modifier Passed No Issue
64 _nonReentrantBefore write Passed No Issue
65 _nonReentrantAfter write Passed No Issue
66 _reentrancyGuardEntered internal Passed No Issue
67 onlyProxy modifier Passed No Issue
68 notDelegated modifier Passed No Issue
69 __UUPSUpgradeable_init internal access only

Initializing
No Issue

70 __UUPSUpgradeable_init_unc
hained

internal access only
Initializing

No Issue

71 proxiableUUID external Passed No Issue
72 upgradeToAndCall write access only Proxy No Issue
73 _checkProxy internal Passed No Issue
74 _checkNotDelegated internal Passed No Issue
75 _authorizeUpgrade internal Passed No Issue
76 _upgradeToAndCallUUPS write Passed No Issue

AccessHub.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 timelocked modifier Passed No Issue
3 initialize external initializer No Issue

4 _authorizeUpgrade internal access by default
admin

No Issue

5 reinit external timelocked No Issue
6 initializeVoter external timelocked No Issue
7 execute external timelocked No Issue
8 setNewTimelock external timelocked Fixed
9 setAuthorizedTarget external timelocked No Issue

10 isAuthorizedTarget external Passed No Issue
11 setNewGovernorInVoter external access by protocol

operator
No Issue

12 governanceWhitelist external access by protocol
operator

No Issue

13 kickInactive external access by default
admin

No Issue

14 setXTFY external timelocked No Issue
15 setO33 external timelocked No Issue
16 transferWhitelistInxTFY external access by protocol

operator
No Issue

17 togglexTFYGovernance external access by protocol
operator

No Issue

18 operatorRedeemxTFY external access by protocol
operator

No Issue

19 migrateOperator external access by protocol
operator

No Issue

20 rescueTrappedTokens external access by protocol
operator

No Issue

21 transferOperatorIno33 external access by protocol
operator

No Issue

22 setEmissionsMultiplierInMinter external access by protocol
operator

No Issue

23 setCooldownExemption external timelocked Fixed
24 setNewRebaseStreamingDurati

on
external timelocked No Issue

25 setNewVoteModuleCooldown external timelocked No Issue
26 _setAuthorizedTarget internal Passed No Issue
27 onlyProxy modifier Passed No Issue
28 notDelegated modifier Passed No Issue
29 __UUPSUpgradeable_init internal access only

Initializing
No Issue

30 __UUPSUpgradeable_init_unch
ained

internal access only
Initializing

No Issue

31 proxiableUUID external Passed No Issue
32 upgradeToAndCall write access only Proxy No Issue
33 _checkProxy internal Passed No Issue
34 _checkNotDelegated internal Passed No Issue
35 _authorizeUpgrade internal Passed No Issue
36 _upgradeToAndCallUUPS write Passed No Issue

37 _getAccessControlEnumerable
Storage

write Passed No Issue

38 __AccessControlEnumerable_in
it

internal access only
Initializing

No Issue

39 __AccessControlEnumerable_in
it_unchained

internal access only
Initializing

No Issue

40 supportsInterface read Passed No Issue
41 getRoleMember read Passed No Issue
42 getRoleMemberCount read Passed No Issue
43 getRoleMembers read Passed No Issue
44 _grantRole internal Passed No Issue
45 _revokeRole internal Passed No Issue
46 initializer modifier Passed No Issue
47 reinitializer modifier Passed No Issue
48 onlyInitializing modifier Passed No Issue
49 _checkInitializing internal Passed No Issue
50 _disableInitializers internal Passed No Issue
51 _getInitializedVersion internal Passed No Issue
52 _isInitializing internal Passed No Issue
53 _initializableStorageSlot internal Passed No Issue
54 _getInitializableStorage write Passed No Issue
55 onlyProxy modifier Passed No Issue
56 notDelegated modifier Passed No Issue
57 __UUPSUpgradeable_init internal access only

Initializing
No Issue

58 __UUPSUpgradeable_init_unch
ained

internal access only
Initializing

No Issue

59 proxiableUUID external Passed No Issue
60 upgradeToAndCall write access only Proxy No Issue
61 _checkProxy internal Passed No Issue
62 _checkNotDelegated internal Passed No Issue
63 _authorizeUpgrade internal Passed No Issue
64 _upgradeToAndCallUUPS write Passed No Issue

FeeCollector.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyTreasury modifier Passed No Issue
3 onlyVoter modifier Passed No Issue
4 setTreasury external access only Treasury No Issue
5 setTreasuryFees external access only Treasury No Issue
6 setFeeDistributor external access only Voter No Issue
7 safeTransferWithLogging internal Passed No Issue
8 collectProtocolFees external Passed No Issue
9 hasWithdrawerRole read Passed No Issue

10 withdrawFromCommunityVau
lt

external access only Voter No Issue

11 withdrawMultipleFromComm
unityVault

external access only Voter No Issue

IchiBribeDistributor.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 depositBribe external Passed No Issue
3 claimBribes external nonReentrant No Issue
4 earned read Passed No Issue
5 _depositVoteWeight external Passed No Issue
6 getCurrentPeriod read Passed No Issue
7 nonReentrant modifier Passed No Issue
8 _nonReentrantBefore write Passed No Issue
9 _nonReentrantAfter write Passed No Issue

10 _reentrancyGuardEntered internal Passed No Issue

IchiVaultGauge.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ReentrancyGuard external Passed No Issue
3 earnedForVaultShares read Passed No Issue
4 claimRewardsForPeriod external nonReentrant No Issue
5 setShareRecorder external Passed No Issue
6 notifyVaultRewardAmount external Passed No Issue
7 whitelistReward external Passed No Issue
8 removeRewardWhitelist external Passed No Issue
9 depositExternalLPReward external Passed No Issue

10 rewardsList external Passed No Issue
11 rewardsListLength external Passed No Issue
12 isWhitelisted read Passed No Issue
13 getCurrentPeriod read Passed No Issue
14 _safeTransfer internal Passed No Issue
15 _safeTransferFrom internal Passed No Issue
16 nonReentrant modifier Passed No Issue
17 _nonReentrantBefore write Passed No Issue
18 _nonReentrantAfter write Passed No Issue
19 _reentrancyGuardEntered internal Passed No Issue

Minter.sol

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyGovernance modifier Passed No Issue
3 kickoff external Passed No Issue
4 updatePeriod external Passed No Issue
5 startEmissions external Passed Fixed
6 updateEmissionsMultiplier external access only

Governance
No Issue

7 calculateWeeklyEmissions read Passed No Issue
8 getPeriod read Passed No Issue
9 getEpoch read Passed No Issue

PositionOracle.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyVoter modifier Passed No Issue
3 onlyOperator modifier Passed No Issue
4 onlyOperator modifier Passed No Issue
5 setOperator external access only

Governance
No Issue

6 setEmergencyAdmin external access only
Governance

No Issue

7 setFallbackMode external access only
Emergency Admin

No Issue

8 setFallbackFactor external access only
Emergency Admin

No Issue

9 submitPositionData external access only
Operator

No Issue

10 _submitPositionData internal Passed No Issue
11 batchSubmitPositionData external access only

Operator
No Issue

12 onlyOwner modifier Passed No Issue
13 owner read Passed No Issue
14 _checkOwner internal Passed No Issue
15 renounceOwnership write access only Owner No Issue
16 transferOwnership write access only Owner No Issue
17 _transferOwnership internal Passed No Issue

Thirdfy.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue

2 mint write Passed No Issue
3 name read Passed No Issue
4 symbol read Passed No Issue
5 decimals read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 _transfer internal Passed No Issue
13 _update

internal Passed No Issue

14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _approve internal Passed No Issue
18 _spendAllowance internal Passed No Issue
19 burn write Passed No Issue
20 burnFrom write Passed No Issue
21 permit write Passed No Issue
22 nonces read Passed No Issue
23 DOMAIN_SEPARATOR external Passed No Issue

ThirdfyTimelock
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyRoleOrOpenRole modifier Passed No Issue
3 receive external Passed No Issue
4 supportsInterface read Passed No Issue
5 isOperation read Passed No Issue
6 isOperationPending read Passed No Issue
7 isOperationReady read Passed No Issue
8 isOperationDone read Passed No Issue
9 getTimestamp read Passed No Issue

10 getOperationState read Passed No Issue
11 getMinDelay read Passed No Issue
12 hashOperation write Passed No Issue
13 hashOperationBatch write Passed No Issue
14 schedule write access by Proposer

role
No Issue

15 scheduleBatch write access by Proposer
role

No Issue

16 _schedule write Passed No Issue

17 cancel write access by Canceller
role

No Issue

18 execute write access by executor
role

No Issue

19 executeBatch write access by executor
role

No Issue

20 _execute internal Passed No Issue
21 _beforeCall read Passed No Issue
22 _afterCall write Passed No Issue
23 updateDelay external Passed No Issue
24 _encodeStateBitmap internal Passed No Issue

VoteModule.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyAccessHub modifier Passed No Issue
3 onlyRevenueManager modifier Passed No Issue
4 updateExternalReward modifier Passed No Issue
5 initialize external initializer No Issue
6 updateReward modifier Passed No Issue
7 depositAll external Passed No Issue
8 deposit write update Reward No Issue
9 withdrawAll external Passed No Issue

10 withdraw write update Reward No Issue
11 notifyRewardAmount external update Reward No Issue
12 setCooldownExemption external access by

AccessHub
No Issue

13 setRevenueManager external access by
AccessHub

No Issue

14 notifyExternalRevenue external access by Revenue
Manager

No Issue

15 setNewDuration external access by
AccessHub

No Issue

16 setNewCooldown external access by
AccessHub

No Issue

17 delegate external Passed No Issue
18 setAdmin external Passed No Issue
19 lastTimeRewardApplicable read Passed No Issue
20 earned read Passed No Issue
21 getReward external update Reward No Issue
22 _claim internal Passed No Issue
23 rewardPerToken read Passed No Issue
24 left read Passed No Issue
25 isDelegateFor external Passed No Issue
26 isAdminFor external Passed No Issue
27 getXTFY external Passed No Issue

28 lastTimeExternalRewardAppli
cable

read Passed No Issue

29 externalRewardPerToken read Passed No Issue
30 earnedExternalRevenue read Passed No Issue
31 _claimExternalRewards internal Passed No Issue
32 externalLeft read Passed No Issue
33 emergencyDisableExternalR

ewards
external access by

AccessHub
No Issue

34 areExternalRewardsEnabled external Passed No Issue
35 nonReentrant modifier Passed No Issue
36 _nonReentrantBefore write Passed No Issue
37 _nonReentrantAfter write Passed No Issue
38 _reentrancyGuardEntered internal Passed No Issue
39 initializer modifier Passed No Issue
40 reinitializer modifier Passed No Issue
41 onlyInitializing modifier Passed No Issue
42 _checkInitializing internal Passed No Issue
43 _disableInitializers internal Passed No Issue
44 _getInitializedVersion internal Passed No Issue
45 _isInitializing internal Passed No Issue
46 _initializableStorageSlot internal Passed No Issue
47 _getInitializableStorage write Passed No Issue

ClGaugeFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setVoter external Passed No Issue
3 setNFPManager external Passed No Issue
4 setAccessHub external Passed No Issue
5 createGauge external Passed No Issue
6 gaugesLength external Passed No Issue

IchiBribeDistributorFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyAccessHub modifier Passed No Issue
3 initialize external initializer No Issue
4 setAccessHub external access by

AccessHub
No Issue

5 setVoter external access by
AccessHub

No Issue

6 createDistributor external Passed No Issue

7 setImplementation external access by
AccessHub

No Issue

8 _authorizeUpgrade internal access by
AccessHub

No Issue

9 initializer modifier Passed No Issue
10 reinitializer modifier Passed No Issue
11 onlyInitializing modifier Passed No Issue
12 _checkInitializing internal Passed No Issue
13 _disableInitializers internal Passed No Issue
14 _getInitializedVersion internal Passed No Issue
15 _isInitializing internal Passed No Issue
16 _initializableStorageSlot internal Passed No Issue
17 _getInitializableStorage write Passed No Issue
18 onlyProxy modifier Passed No Issue
19 notDelegated modifier Passed No Issue
20 __UUPSUpgradeable_init internal access only

Initializing
No Issue

21 __UUPSUpgradeable_init_un
chained

internal access only
Initializing

No Issue

22 proxiableUUID external Passed No Issue
23 upgradeToAndCall write access only Proxy No Issue
24 _checkProxy internal Passed No Issue
25 _checkNotDelegated internal Passed No Issue
26 _authorizeUpgrade internal Passed No Issue
27 _upgradeToAndCallUUPS write Passed No Issue

IchiVaultGaugeFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyVoterOrAccessHub modifier Passed No Issue
3 onlyAccessHub modifier Passed No Issue
4 initialize external initializer No Issue
5 setVoter external access by

AccessHub
No Issue

6 setAccessHub external access by
AccessHub

No Issue

7 createVaultGauge external access only Voter Or
AccessHub

No Issue

8 _authorizeUpgrade internal access by
AccessHub

No Issue

9 initializer modifier Passed No Issue
10 reinitializer modifier Passed No Issue
11 onlyInitializing modifier Passed No Issue
12 _checkInitializing internal Passed No Issue
13 _disableInitializers internal Passed No Issue

14 _getInitializedVersion internal Passed No Issue
15 _isInitializing internal Passed No Issue
16 _initializableStorageSlot internal Passed No Issue
17 _getInitializableStorage write Passed No Issue
18 onlyProxy modifier Passed No Issue
19 notDelegated modifier Passed No Issue
20 __UUPSUpgradeable_init internal access only

Initializing
No Issue

21 __UUPSUpgradeable_init_un
chained

internal access only
Initializing

No Issue

22 proxiableUUID external Passed No Issue
23 upgradeToAndCall write access only Proxy No Issue
24 _checkProxy internal Passed No Issue
25 _checkNotDelegated internal Passed No Issue
26 _authorizeUpgrade internal Passed No Issue
27 _upgradeToAndCallUUPS write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss, etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g., public access to crucial

Medium Medium-level vulnerabilities are important to fix; however,
they can’t lead to tokens lose.

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc., code snippets, which can’t have a significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Timelock Can Be Set to Zero Address (Bricking Governance): AccessHub.sol

The setNewTimelock function allows the current timelock to set the timelock address to

address(0). If this happens, all timelocked functions become permanently inaccessible,

bricking the contract’s governance and upgradeability.

Resolution: Add a check:

require(_timelock != address(0), "Zero address not allowed");

to prevent setting the timelock to the zero address.

Status: Fixed

Medium

No medium severity vulnerabilities were found.

Low

(1) No AccessHub Ownership Transfer Event: AccessHub.sol

When the timelock is changed, there is no event emitted to signal the change.

Resolution: Emit an event when the timelock is updated.

Status: Fixed

http://accesshub.so

(2) Silent Failure in claimClGaugeRewards: RewardClaimers.sol

The function uses nested try/catch blocks and silently continues if both interfaces fail. This

may make it difficult for users to know if their reward claim was successful or not.

Resolution: Emit an event or return a status to indicate which claims failed.

Status: Fixed

(3) No Input Validation for Nested Arrays: RewardClaimers.sol

The function claimClGaugeRewards assumes that _gauges, _tokens, and _nfpTokenIds

are all of the same length and that each _tokens[i] and _nfpTokenIds[i] are valid. If the

arrays are mismatched, this could cause out-of-bounds errors.

Resolution: Array length check require.

Status: Fixed

(4) No Array Length Check in setCooldownExemption: AccessHub.sol

The function loops over _candidates and _exempt arrays but does not check that their

lengths match, which could cause out-of-bounds errors.​

Resolution: require(_candidates.length == _exempt.length, "LENGTH_MISMATCH");

Status: Fixed

(5) No Error Handling for External Calls in claimRewards: RewardClaimers.sol

The function claimRewards calls IGauge(_gauges[i]).getReward(msg.sender, _tokens[i]);

in a loop without try/catch or error handling. If any call fails, the entire transaction will

revert, potentially preventing users from claiming rewards from other gauges.

Resolution: Wrap the call in a try/catch block to allow the function to continue if one

gauge call fails and Emit an event or return a status to indicate which claims failed.

Status: Fixed

(6) No Input Validation for Array Lengths in: RewardClaimers.sol

The function claimRewards assumes that _gauges and _tokens arrays are of the same

length but does not check this, which could lead to out-of-bounds errors.​

Resolution: require(_gauges.length == _tokens.length, "Array length mismatch");

Status: Fixed

(7) Lack of Event Emission: Minter.sol

startEmissions does not emit an event for starting emissions. This can make off-chain

tracking and auditing more difficult.

Resolution: Emit events for all significant state changes, especially those that affect

emissions or contract configuration.

Status: Fixed

Very Low / Informational / Best practices:
(1) Unnecessary import statement:

Minter.sol

The import statement import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; is

present in Minter.sol, but based on a search of the file, the Math library is not actually used

anywhere in the contract.

Resolution: can be removed to clean up the code.

Status: Fixed

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet private key were compromised, then it would create trouble. The following

are Admin functions:

o33.sol
●​ submitVotes: Casts votes on specified pools with given weights via the Voter

contract by the Operator.

●​ compound: Converts any TFY balance to xTFY and stakes it into the VoteModule to

auto-compound rewards by the Operator.

●​ claimRebase: Claims TFY rebases, converts them to xTFY, and deposits into the

VoteModule for compounding by the Operator.

●​ claimIncentives: Claims incentive rewards from FeeDistributors for voted gauges by

the Operator.

●​ swapIncentiveViaAggregator: Swaps reward tokens (non-TFY) to TFY using a

whitelisted aggregator and enforces slippage check by the Operator.

●​ rescue: Allows emergency token rescue by AccessHub while ensuring xTFY

balance/integrity remains unchanged by the AccessHub.

●​ unlock: Unlocks the current epoch for user deposits and withdrawals if cooldown is

complete by the Operator.

●​ transferOperator: Updates the operator address via the AccessHub contract.

●​ whitelistAggregator: Adds or removes a token swap aggregator from the whitelist

via the AccessHub contract..

●​ whitelistRelayer: Adds or removes a relayer from the meta-transaction whitelist via

the AccessHub contract.

xTFY.sol
●​ pause: Pauses all state-changing functions by the governance.

●​ unpause: Unpauses contract operations by the governance.

●​ rebase: Called by Minter to distribute pendingRebase to VoteModule once per

epoch.

●​ emergencyRebase: Allows governance to manually trigger a rebase, skipping

epoch check.

●​ operatorRedeem: Burns `xTFY` from operator and returns TFY to it by the

governance.

●​ rescueTrappedTokens: Allows governance to recover non-TFY tokens by the

governance.

●​ migrateOperator: Updates the `operator` address by the governance.

●​ setExemption: Sets exemption-from-transfer rules for senders by the governance.

●​ setExemptionTo: Sets exemption-to-transfer rules for receivers by the governance.

AccessHub.sol
●​ _authorizeUpgrade: Restricts upgrades to `DEFAULT_ADMIN_ROLE`.

●​ reinit: Updates protocol contracts and re-authorizes them by timelock.

●​ initializeVoter: Initializes the `Voter` contract with required addresses by timelock.

●​ execute: Executes arbitrary function call on a whitelisted contract by timelock.

●​ setNewTimelock: Updates the timelock address by timelock.

●​ setAuthorizedTarget: Adds or removes a contract from the execute whitelist by

timelock.

●​ setNewGovernorInVoter: Updates governor address in the `Voter` contract by the

protocol operator-only.

●​ governanceWhitelist: Whitelists or removes governance tokens by the protocol

operator-only.

●​ kickInactive: Resets inactive voters with no upcoming votes by the admin-only.

●​ setXTFY: Updates `xTFY` contract address and re-authorizes by timelock.

●​ setO33: Updates `o33` contract address and re-authorizes by timelock.

●​ transferWhitelistInxTFY: Updates transfer exemption list in `xTFY` by the protocol

operator-only.

●​ togglexTFYGovernance: Pauses/unpauses `xTFY` contract by the protocol

operator-only.

●​ operatorRedeemxTFY: Redeems `xTFY` and sends TFY to operator by the protocol

operator-only.

●​ migrateOperator: Transfers operator role in `xTFY by the protocol operator-only.

●​ rescueTrappedTokens: Recovers stuck tokens from `xTFY` by the protocol

operator-only.

●​ transferOperatorIno33: Transfers operator role in `o33` contract by the protocol

operator-only.

●​ setEmissionsMultiplierInMinter: Updates emissions multiplier in `Minter` by the

protocol operator-only.

●​ setCooldownExemption: Adds/removes cooldown exemptions by timelock.

●​ setNewRebaseStreamingDuration: Updates the rebase streaming duration by

timelock.

●​ setNewVoteModuleCooldown: Updates cooldown period for vote module by

timelock.

FeeCollector.sol

●​ setTreasury: Updates the treasury address; only callable by current treasury.

●​ setTreasuryFees: Sets the treasury fee percentage by only treasury.

●​ setFeeDistributor: Sets the fee distributor address; only callable by the voter.

●​ withdrawFromCommunityVault: Withdraws a specific token from the

AlgebraCommunityVault; optionally sends to fee distributor.

●​ withdrawMultipleFromCommunityVault: Withdraws multiple tokens from the vault in

a batch; optionally sends to fee distributor.

IchiVaultGauge.sol
●​ setShareRecorder: Allows the governor or accessHub to update the address that

can submit share-seconds.

●​ whitelistReward: Authorizes a token to be used as a reward by adding it to the

whitelist.

●​ removeRewardWhitelist: Removes a previously whitelisted reward token.

Minter.sol
●​ updateEmissionsMultiplier: Governance-controlled function to adjust emissions

multiplier within a 25% bound.

PositionOracle.sol

●​ setOperator: Voter-only function to assign a new oracle operator address.

●​ setEmergencyAdmin: Voter-only function to assign a new emergency admin.

●​ setFallbackMode: Emergency admin can enable or disable fallback mode.

●​ setFallbackFactor: Emergency admin can set the fallback time-in-range percentage

(max 100).

●​ submitPositionData: Operator-only function to submit time-in-range and liquidity

data to the voter for a single pool.

●​ batchSubmitPositionData: Operator-only function to submit position data across

multiple pools in a single transaction.

RevenueToRebaseManager.sol
●​ _authorizeUpgrade: Authorizes UUPS upgrade; restricted to governance

(`AccessHub`).

●​ setOperator: Governance can update the operator responsible for triggering weekly

revenue execution.

●​ governanceCancelProposal: Governance can cancel a proposal in case of

malicious activity or emergency.

●​ emergencyPause: Pauses contract operations in emergency situations.

●​ emergencyUnpause: Resumes contract operations after an emergency pause.

●​ emergencyRecoverTokens: Allows governance to recover ERC20 tokens during an

emergency pause.

Thirdfy.sol
●​ mint: Only the minter address can mint new tokens.

VoteModule.sol

●​ setCooldownExemption: Sets cooldown exemption for a user by AccessHub-Only.

●​ setRevenueManager: Sets the address allowed to stream external rewards by

AccessHub-Only.

●​ notifyExternalRevenue: Streams external rewards from `RevenueManager` Only

callable by authorized RevenueToRebaseManager.

●​ setNewDuration: Updates reward distribution duration by AccessHub-Only.

●​ setNewCooldown: Updates the cooldown period by AccessHub-Only.

●​ emergencyDisableExternalRewards: Emergency function to disable external

rewards for safety Only callable by AccessHub governance.

:

VoterV4.sol
●​ setFeeCollector: Sets the fee collector address by the contract owner or accessHub

or governor.

●​ setIchiVaultGaugeFactory: Updates the Ichi Vault Gauge Factory address via

governance.

●​ setIchiBribeDistributorFactory: Updates the Ichi Bribe Distributor Factory address

via governance.

●​ setGlobalRatio: Sets the global xTFY emissions ratio; Can only be called by

governance.

●​ setLauncherPlugin: Updates the address of the launcher plugin via governance.

●​ setGovernor: Updates the `governor` address and emits an event by current

governors.

●​ whitelist: Marks a token as whitelisted; callable by deployer or governance.

●​ revokeWhitelist: Removes a token from the whitelist by the contract owner or

accessHub or governor.

●​ killGauge: Deactivates a gauge, distributes remaining emissions to `governor`, and

marks it as killed by the governor.

●​ reviveGauge: Reactivates a previously killed gauge and updates its distribution

state by the governor.

●​ stuckEmissionsRecovery: Allows governance to recover unclaimed emissions from

a dead gauge for a specific period.

●​ whitelistGaugeRewards: Whitelists a reward token for a specific gauge based on

its type by the governor.

●​ removeGaugeRewardWhitelist: Removes a whitelisted reward token from a gauge

by the governor.

●​ createCLGauge: Creates a new CL gauge for an Algebra pool, verifies token

whitelist and feeCollector by the governor.

●​ notifyRewardAmount: Called by `Minter` to fund this contract with TFY and mark

reward distribution for the current period.

●​ withdrawFromCommunityVault: Withdraws specified amount of a token from the

AlgebraCommunityVault, optionally routing to the fee distributor by the governor.

●​ withdrawMultipleFromCommunityVault: Withdraws multiple token amounts from the

vault in a single transaction by the governor.

●​ recordPositionsTimeInRange: Allow calls from governor, approved oracles, or the

position oracle can record NFT LP position time-in-range data for a gauge.

●​ setOracleApproval: Grants or revokes permission for an address to record LP

position data by the governor.

●​ setPositionOracle: Set the position oracle address by the governor.

●​ setOracleOperator: Sets the operator address in the PositionOracle by the contract

owner or accessHub or governor.

●​ createIchiVaultGauge: Creates a new IchiVaultGauge instance for a pair of Ichi

vaults by the governor.

●​ setShareRecorder: Sets the share recorder address for a specific IchiVaultGauge

by the governor.

ClGaugeFactory.sol
●​ setVoter: Sets the `voter` address; callable only once or by current

voter/accessHub.

●​ setNFPManager: Sets the `nfpManager` address; restricted to `voter` or

`accessHub`.

●​ setAccessHub: Sets the `accessHub`; can be initialized once or updated by `voter`

or current `accessHub`.

IchiBribeDistributorFactory.sol
●​ setAccessHub: Updates the `AccessHub` address; callable only by the current

`AccessHub`.

●​ setVoter: Sets the Voter contract address; callable only by `AccessHub`.

●​ createDistributor: Deploys a new `IchiBribeDistributor` contract and emits

`DistributorCreated`; callable by `AccessHub` or `Voter`.

●​ setImplementation: Updates the tracked implementation address; callable only by

`AccessHub`.

●​ _authorizeUpgrade: UUPS upgrade hook that restricts upgrades to only

`AccessHub`.

IchiVaultGaugeFactory.sol

●​ setVoter: Updates the authorized `VoterV4` address; callable only by `AccessHub`.

●​ setAccessHub: Updates the `AccessHub` address; callable only by current

`AccessHub`.

●​ createVaultGauge: Deploys a new `IchiVaultGauge` with the specified vault pair and

initial share recorder; callable by `Voter` or `AccessHub`.

●​ Deploys a new `IchiVaultGauge` with the specified vault pair and initial share

recorder; callable by `Voter` or `AccessHub`.

●​ _authorizeUpgrade: Authorize contract upgrades - only AccessHub can authorize

upgrades.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on the given objects as files. We observed 1 high, 7 low, and 1 very low /

Informational issues in the smart contracts. We confirm that all issues are fixed in the

revised smart contracts code. So, the smart contracts are ready for the mainnet
deployment.

Since possible test cases can be unlimited for such a smart contract protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of the functionality of the software under review. We then meet with the developers to gain

an appreciation of their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm threat models

and attack surfaces. We read design documentation, review other audit results, search for

similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract by the best industry practices at the
date of this report, about: cybersecurity vulnerabilities and issues in smart contract source
code, the details of which are disclosed in this report, (Source Code); the Source Code
compilation, deployment and functionality (performing the intended functions).

Because the total number of test cases is unlimited, the audit makes no statements or
warranties on the security of the code. It also cannot be considered a sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other
statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report alone. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix

Code Flow Diagram - TFY Liquid Staking (o33) Protocol

o33 Diagram

xTFY Diagram

VoterV4 Diagram

AccessHub Diagram

FeeCollector Diagram

IchiBribeDistributor Diagram

IchiVaultGauge Diagram

Minter Diagram

PositionOracle Diagram

RevenueToRebaseManager Diagram

Thirdfy Diagram

ThirdfyTimelock Diagram

VoteModule Diagram

ClGaugeFactory Diagram

IchiBribeDistributorFactory Diagram

IchiVaultGaugeFactory Diagram

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We analyzed the project together. Below are the results.

Slither Log >> o33.sol

INFO:Detectors:
o33.whitelistRelayer(address,bool)._status (o33.sol#2180) shadows:
 - ReentrancyGuard._status (o33.sol#1895) (state variable)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
o33.transferOperator(address)._newOperator (o33.sol#2158) lacks a zero-check on :
 - operator = _newOperator (o33.sol#2162)
o33.executeMetaTransaction(address,bytes,bytes32,bytes32,uint8).user (o33.sol#2189) lacks a
zero-check on :
 - (success,returnData) = address(this).call(abi.encodePacked(functionSignature,user))
(o33.sol#2208-2210)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in o33._deposit(address,address,uint256,uint256) (o33.sol#2262-2275):
 External calls:
 - voteModule.deposit(assets) (o33.sol#2271)
 State variables written after the call(s):
 - _mint(receiver,shares) (o33.sol#2272)
 - _balances[from] = fromBalance - value (o33.sol#1550)
 - _balances[to] += value (o33.sol#1562)
 - _mint(receiver,shares) (o33.sol#2272)
 - _totalSupply += value (o33.sol#1542)
 - _totalSupply -= value (o33.sol#1557)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in o33._withdraw(address,address,address,uint256,uint256) (o33.sol#2277-2296):
 External calls:
 - voteModule.withdraw(assets) (o33.sol#2291)
 Event emitted after the call(s):
 - Withdraw(caller,receiver,owner,assets,shares) (o33.sol#2295)

Reentrancy in o33.claimRebase() (o33.sol#2034-2083):
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
o33.isUnlocked() (o33.sol#2238-2250) uses timestamp for comparisons
 Dangerous comparisons:
 - timeLeftInPeriod <= 3600 (o33.sol#2245)
o33.isCooldownActive() (o33.sol#2253-2257) uses timestamp for comparisons
 Dangerous comparisons:
 - block.timestamp >= unlockTime (o33.sol#2256)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Parameter o33.rescue(address,uint256)._token (o33.sol#2135) is not in mixedCase
Parameter o33.transferOperator(address)._newOperator (o33.sol#2158) is not in mixedCase
Parameter o33.whitelistAggregator(address,bool)._aggregator (o33.sol#2169) is not in
mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
o33.activePeriod (o33.sol#1957) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-immutable
INFO:Slither:o33.sol analyzed (18 contracts with 93 detectors), 53 result(s) found

Slither Log >> xTFY.sol

INFO:Detectors:
xTFY.constructor(address,address,address,address,address,address)._voteModule
(xTFY.sol#1633) lacks a zero-check on :
 - VOTE_MODULE = _voteModule (xTFY.sol#1641)
xTFY.migrateOperator(address)._operator (xTFY.sol#1818) lacks a zero-check on :
 - operator = _operator (xTFY.sol#1821)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Variable xTFY.TFY (xTFY.sol#1607) is not in mixedCase
Variable xTFY.VOTER (xTFY.sol#1608) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:xTFY.sol analyzed (15 contracts with 93 detectors), 100 result(s) found

Slither Log >> VoterV4.sol

INFO:Detectors:
VoterV4._distribute(address,uint256,uint256) (VoterV4.sol#3468-3530) ignores return value by
IERC20(_tfy).transfer(_gauge,_tfyClaimable) (VoterV4.sol#3489)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer
INFO:Detectors:
VoterV4.tfy (VoterV4.sol#3164) is never initialized. It is used in:
 - VoterV4._distribute(address,uint256,uint256) (VoterV4.sol#3468-3530)
 - VoterV4.killGauge(address) (VoterV4.sol#3574-3604)
 - VoterV4.stuckEmissionsRecovery(address,uint256) (VoterV4.sol#3617-3635)
 - VoterV4._createGaugeForCLPool(address,address) (VoterV4.sol#3723-3781)
 - VoterV4.notifyRewardAmount(uint256) (VoterV4.sol#3826-3834)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-state-variables
INFO:Detectors:
VoterV4.poke(address) (VoterV4.sol#3343-3378) uses a dangerous strict equality:
 - _lastVoted == period (VoterV4.sol#3370)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
INFO:Detectors:
Parameter VoterV4.createIchiVaultGauge(address,address[2],address)._initialShareRecorder
(VoterV4.sol#4080) is not in mixedCase
Parameter VoterV4.setShareRecorder(address,address)._ichiVaultGauge (VoterV4.sol#4132) is
not in mixedCase
Parameter VoterV4.setShareRecorder(address,address)._recorder (VoterV4.sol#4132) is not in
mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
VoterV4.xTFY (VoterV4.sol#3182) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Slither:VoterV4.sol analyzed (37 contracts with 93 detectors), 230 result(s) found

Slither Log >> AccessHub.sol

INFO:Detectors:
AccessHub.setCooldownExemption(address[],bool[]) (AccessHub.sol#2689-2696) has external
calls inside a loop: voteModule.setCooldownExemption(_candidates[i],_exempt[i])
(AccessHub.sol#2694)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
INFO:Detectors:
Parameter AccessHub.setCooldownExemption(address[],bool[])._exempt (AccessHub.sol#2691)

is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:AccessHub.sol analyzed (26 contracts with 93 detectors), 103 result(s) found

Slither Log >> FeeCollector.sol

INFO:Detectors:
FeeCollector.safeTransferWithLogging(IERC20,address,uint256,string,string)
(FeeCollector.sol#915-939) uses a dangerous strict equality:
 - to == address(0) || amount == 0 (FeeCollector.sol#922)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
INFO:Detectors:
FeeCollector.setTreasury(address)._treasury (FeeCollector.sol#896) lacks a zero-check on :
 - treasury = _treasury (FeeCollector.sol#898)
FeeCollector.setFeeDistributor(address)._feeDist (FeeCollector.sol#909) lacks a zero-check on :
 - feeDist = _feeDist (FeeCollector.sol#911)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Parameter FeeCollector.setFeeDistributor(address)._feeDist (FeeCollector.sol#909) is not in
mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
FeeCollector (FeeCollector.sol#826-1113) does not implement functions:
 - IFeeCollector.collectProtocolFees(IAlgebraPool) (FeeCollector.sol#109)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unimplemented-functions
INFO:Slither:FeeCollector.sol analyzed (10 contracts with 93 detectors), 15 result(s) found

Slither Log >> IchiBribeDistributor.sol

INFO:Detectors:
Function IBribeDistributor._depositVoteWeight(address,uint256,uint256)
(IchiBribeDistributor.sol#51) is not in mixedCase
Function IVoter.BASIS() (IchiBribeDistributor.sol#243) is not in mixedCase
Function IchiBribeDistributor._depositVoteWeight(address,uint256,uint256)
(IchiBribeDistributor.sol#2852-2865) is not in mixedCase
Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:IchiBribeDistributor.sol analyzed (10 contracts with 93 detectors), 27 result(s) found

Slither Log >> IchiVaultGauge.sol

INFO:Detectors:
Reentrancy in IchiVaultGauge.claimRewardsForPeriod(uint256,address[])
(IchiVaultGauge.sol#4004-4020):
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
Reentrancy in IchiVaultGauge.depositExternalLPReward(address,uint256)
(IchiVaultGauge.sol#4088-4108):
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Parameter IchiVaultGauge.removeRewardWhitelist(address)._reward (IchiVaultGauge.sol#4075)
is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:IchiVaultGauge.sol analyzed (10 contracts with 93 detectors), 78 result(s) found

Slither Log >> Minter.sol

INFO:Detectors:
Minter.updatePeriod() (Minter.sol#2484-2519) ignores return value by
tfy.approve(voter,_weeklyEmissions) (Minter.sol#2503)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
Minter.updatePeriod() (Minter.sol#2484-2519) uses timestamp for comparisons
 Dangerous comparisons:
 - getPeriod() > period (Minter.sol#2489)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Low level call in Minter.updatePeriod() (Minter.sol#2484-2519):
 - (success,None) = xTFY.call(data) (Minter.sol#2510)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Minter.accessHub (Minter.sol#2439) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-immutable
INFO:Slither:Minter.sol analyzed (9 contracts with 93 detectors), 39 result(s) found

Slither Log >> PositionOracle.sol

INFO:Detectors:
PositionOracle._submitPositionData(address,uint128[]) (PositionOracle.sol#379-388) is never
used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Parameter PositionOracle.setOperator(address)._operator (PositionOracle.sol#339) is not in
mixedCase
Parameter PositionOracle.setEmergencyAdmin(address)._admin (PositionOracle.sol#348) is not
in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:PositionOracle.sol analyzed (5 contracts with 93 detectors), 6 result(s) found

Slither Log >> RevenueToRebaseManager.sol

INFO:Detectors:
RevenueToRebaseManager (RevenueToRebaseManager.sol#1849-2630) is an upgradeable
contract that does not protect its initialize functions:
RevenueToRebaseManager.initialize(address,address,address,address,address)
(RevenueToRebaseManager.sol#2041-2072). Anyone can delete the contract with:
UUPSUpgradeable.upgradeToAndCall(address,bytes)
(RevenueToRebaseManager.sol#1759-1762)Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unprotected-upgradeable-contract
INFO:Detectors:
Reentrancy in RevenueToRebaseManager.executeWeeklyRevenue()
(RevenueToRebaseManager.sol#2101-2151):
 - RevenueToRebaseManager.canCollect() (RevenueToRebaseManager.sol#2446-2448)
 - RevenueToRebaseManager.getTotalStats() (RevenueToRebaseManager.sol#2547-2557)
 - RevenueToRebaseManager.lastCollectionTime (RevenueToRebaseManager.sol#1882)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
RevenueToRebaseManager._executeRebase(uint256)
(RevenueToRebaseManager.sol#2202-2220) ignores return value by
token.approve(voteModule,0) (RevenueToRebaseManager.sol#2219)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
RevenueToRebaseManager.__gap (RevenueToRebaseManager.sol#2011) is never used in
RevenueToRebaseManager (RevenueToRebaseManager.sol#1849-2630)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variable
INFO:Slither:RevenueToRebaseManager.sol analyzed (18 contracts with 93 detectors), 59
result(s) found

Slither Log >> Thirdfy.sol

INFO:Detectors:
Thirdfy.constructor(address)._minter (Thirdfy.sol#968) lacks a zero-check on :
 - minter = _minter (Thirdfy.sol#970)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Thirdfy.minter (Thirdfy.sol#965) should be immutable
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-immutable
INFO:Slither:Thirdfy.sol analyzed (17 contracts with 93 detectors), 23 result(s) found

Slither Log >> ThirdfyTimelock.sol

INFO:Detectors:
TimelockController.getOperationState(bytes32) (ThirdfyTimelock.sol#532-543) uses a
dangerous strict equality:
 - timestamp == 0 (ThirdfyTimelock.sol#534)
TimelockController.getOperationState(bytes32) (ThirdfyTimelock.sol#532-543) uses a
dangerous strict equality:
 - timestamp == _DONE_TIMESTAMP (ThirdfyTimelock.sol#536)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
INFO:Detectors:
TimelockController.getOperationState(bytes32) (ThirdfyTimelock.sol#532-543) uses timestamp
for comparisons
 Dangerous comparisons:
 - timestamp == 0 (ThirdfyTimelock.sol#534)
 - timestamp == _DONE_TIMESTAMP (ThirdfyTimelock.sol#536)
 - timestamp > block.timestamp (ThirdfyTimelock.sol#538)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
TimelockController._encodeStateBitmap(TimelockController.OperationState)
(ThirdfyTimelock.sol#788-790) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Slither:ThirdfyTimelock.sol analyzed (12 contracts with 93 detectors), 17 result(s) found

Slither Log >> VoteModule.sol

INFO:Detectors:
VoteModule.notifyRewardAmount(uint256) (VoteModule.sol#3118-3161) uses arbitrary from in
transferFrom: transferred = underlying.transferFrom(xTFY,address(this),amount)
(VoteModule.sol#3129)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#arbitrary-from-in-transferfrom
INFO:Detectors:Parameter VoteModule.setNewCooldown(uint256)._cooldownInSeconds
(VoteModule.sol#3245) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:VoteModule.sol analyzed (9 contracts with 93 detectors), 75 result(s) found

Slither Log >> ClGaugeFactory.sol

INFO:Detectors:
ClGaugeFactory.gauges (ClGaugeFactory.sol#23) is never initialized. It is used in:
 - ClGaugeFactory.gaugesLength() (ClGaugeFactory.sol#44-46)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-state-variables
INFO:Detectors:
ClGaugeFactory.lastGauge (ClGaugeFactory.sol#18) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Slither:ClGaugeFactory.sol analyzed (2 contracts with 93 detectors), 8 result(s) found

Slither Log >> IchiBribeDistributorFactory.sol

INFO:Detectors:
Contract locking ether found:
 Contract IchiBribeDistributorFactory (IchiBribeDistributorFactory.sol#3617-3706) has
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether
INFO:Detectors:
Parameter IchiBribeDistributorFactory.setImplementation(address)._newImplementation
(IchiBribeDistributorFactory.sol#3696) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:IchiBribeDistributorFactory.sol analyzed (20 contracts with 93 detectors), 61
result(s) found

Slither Log >> IchiVaultGaugeFactory.sol

INFO:Detectors:
IchiVaultGaugeFactory (IchiVaultGaugeFactory.sol#4798-4885) is an upgradeable contract that
does not protect its initialize functions: IchiVaultGaugeFactory.initialize(address,address)
(IchiVaultGaugeFactory.sol#4830-4835). Anyone can delete the contract with:

UUPSUpgradeable.upgradeToAndCall(address,bytes)
(IchiVaultGaugeFactory.sol#4731-4734)Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unprotected-upgradeable-contract
INFO:Detectors:
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
INFO:Detectors:
Parameter IchiVaultGaugeFactory.createVaultGauge(address[2],address)._initialShareRecorder
(IchiVaultGaugeFactory.sol#4866) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:IchiVaultGaugeFactory.sol analyzed (20 contracts with 93 detectors), 103 result(s)
found

Solidity Static Analysis

o33.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 259:22:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 313:50:

Gas costs:
Gas requirement of function o33.rescue is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 231:4:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 339:17:

xTFY.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 299:17:

Gas costs:
Gas requirement of function xTFY.setExemptionTo is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 359:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 326:8:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 366:8:

Similar variable names:
xTFY.createVest(uint256) : Variables have very similar names "MIN_VEST" and "MAX_VEST".
Note: Modifiers are currently not considered by this static analysis.
Pos: 260:34:

VoterV4.sol

Transaction origin:
Use of tx.origin: "tx.origin" is useful only in very exceptional cases. If you use it for authentication,
you usually want to replace it by "msg.sender", because otherwise any contract you call can act
on your behalf.
Pos: 506:26:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 649:16:

Gas costs:
Gas requirement of function RewardClaimers.claimRewards is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 770:4:

Delete dynamic array:
The "delete" operation when applied to a dynamically sized array in Solidity generates code to

delete each of the elements contained. If the array is large, this operation can surpass the block
gas limit and raise an OOG exception. Also nested dynamically sized objects can produce the
same results.
Pos: 255:12:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 183:8:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 333:8:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 245:16:

AccessHub.sol

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 149:27:

Gas costs:
Gas requirement of function AccessHub.setNewGovernorInVoter is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 174:4:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage

values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 184:8:

FeeCollector.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
FeeCollector.safeTransferWithLogging(contract IERC20,address,uint256,string,string): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.Note: Import aliases are currently not supported by this static analysis.
Pos: 100:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 88:8:

IchiBribeDistributor.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 193:15:

Gas costs:
Gas requirement of function IchiBribeDistributor.claimBribes is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 93:4:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at

maximum you can pass to such functions to make it successful.
Pos: 94:8:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 55:8:

IchiVaultGauge.sol

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 323:44:

Gas costs:
Gas requirement of function IchiVaultGauge.isWhitelisted is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 300:4:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 120:8:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 204:8:

Minter.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.

That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 174:17:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 105:35:

Gas costs:
Gas requirement of function Minter.startEmissions is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 117:4:

PositionOracle.sol

Gas costs:
Gas requirement of function PositionOracle.batchSubmitPositionData is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)
Pos: 106:4:

Constant/View/Pure functions:
PositionOracle.setFallbackMode(bool) : Potentially should be constant/view/pure but is not. Note:
Modifiers are currently not considered by this static analysis.
Pos: 71:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 46:8:

RevenueToRebaseManager.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 332:55:

Gas costs:
Gas requirement of function RevenueToRebaseManager.executeWeeklyRevenue is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be executed. Please
avoid loops in your functions or actions that modify large areas of storage (this includes clearing
or copying arrays in storage)
Pos: 292:4:

Similar variable names:
RevenueToRebaseManager.createDistributionProposal(uint256,uint256) : Variables have very
similar names "proposals" and "proposalId". Note: Modifiers are currently not considered by this
static analysis.
Pos: 464:52:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 804:8:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 622:12:

Thirdfy.sol

Gas costs:
Gas requirement of function Thirdfy.mint is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 24:4:

VoteModule.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 244:20:

Gas costs:
Gas requirement of function VoteModule.withdrawAll is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 227:4:

Similar variable names:
VoteModule.delegate(address) : Variables have very similar names "delegates" and "delegatee".
Note: Modifiers are currently not considered by this static analysis.
Pos: 415:34:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 407:12:

ClGaugeFactory.sol

No return:
IClGaugeFactory.createGauge(address): Defines a return type but never explicitly returns a value.
Pos: 6:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 21:8:

IchiBribeDistributorFactory.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 193:15:

Gas costs:
Gas requirement of function IchiBribeDistributorFactory.initialize is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 42:4:

No return:
IIchiBribeDistributorFactory.createDistributor(address,address): Defines a return type but never

explicitly returns a value.
Pos: 19:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 78:8:

IchiVaultGaugeFactory.sol

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's
interface.
Pos: 323:44:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.
Pos: 183:8:

Similar variable names:
IchiVaultGauge.(address[2],address,address) : Variables have very similar names "ichiVault1" and
"_ichiVaults". Note: Modifiers are currently not considered by this static analysis.
Pos: 85:21:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 326:8:

Solhint Linter

o33.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Contract name must be in CamelCase
Pos: 1:16
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:65
Avoid to use low level calls.
Pos: 51:312
Avoid making time-based decisions in your business logic
Pos: 17:360

xTFY.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Contract name must be in CamelCase
Pos: 1:13
Variable name must be in mixedCase
Pos: 5:32
Explicitly mark visibility of state
Pos: 5:37
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:61
Avoid making time-based decisions in your business logic
Pos: 18:298
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:302

VoterV4.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:14
Use double quotes for string literals
Pos: 32:40
Contract has 41 states declarations but allowed no more than 15
Pos: 1:45
Code contains empty blocks

Pos: 53:988
Variable "poolAddress" is unused
Pos: 9:954
Variable "period" is unused
Pos: 9:955
Avoid to use low level calls.
Pos: 23:1026

AccessHub.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Code contains empty blocks
Pos: 88:90
Avoid to use low level calls.
Pos: 28:148

FeeCollector.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Use double quotes for string literals
Pos: 71:25
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:55
Code contains empty blocks
Pos: 17:66

IchiBribeDistributor.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:52
Error message for require is too long
Pos: 9:53
Avoid making time-based decisions in your business logic
Pos: 16:192

IchiVaultGauge.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:76
Avoid making time-based decisions in your business logic
Pos: 16:305
Avoid to use low level calls.
Pos: 45:313
Avoid to use low level calls.
Pos: 45:322

Minter.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:46
Avoid to use low level calls.
Pos: 36:104
Avoid making time-based decisions in your business logic
Pos: 18:173

PositionOracle.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:44
Error message for require is too long
Pos: 9:79
Code contains empty blocks
Pos: 29:109

RevenueToRebaseManager.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Contract has 21 states declarations but allowed no more than 15
Pos: 1:39
Avoid making time-based decisions in your business logic
Pos: 44:781

Error message for require is too long
Pos: 9:801

Thirdfy.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:14

ThirdfyTimelock.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:6
Code contains empty blocks
Pos: 65:11

VoteModule.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Contract has 27 states declarations but allowed no more than 15
Pos: 1:39
Avoid making time-based decisions in your business logic
Pos: 34:131
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:148
Provide an error message for require
Pos: 9:391
Avoid making time-based decisions in your business logic
Pos: 51:651

ClGaugeFactory.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1

global import of path ICLGaugeInterfaces.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
name (import "path" as Name)
Pos: 1:3
Error message for revert is too long
Pos: 9:35

IchiBribeDistributorFactory.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Code contains empty blocks
Pos: 91:103

IchiVaultGaugeFactory.sol

Compiler version ^0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:76
Avoid making time-based decisions in your business logic
Pos: 16:305

Software analysis result:
This software reported many false positive results, and some are informational issues. So,

those issues can be safely ignored.

	●​Reward Distribution Based on Share-Seconds
	●​Core Role:
	 Security & Safety
	Governance Integration
	Accurate Accounting
	Purpose:

	Core State Variables

