@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project:. TFY Liquid Staking Token
Website: thirdfy.com

Platform: Base Sepolia Network
Language: Solidity

DEICK July 22nd, 2025

https://thirdfy.com/

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 7
Claimed Smart Contract Featurescooiiiiiii e 9
AUIt SUMMIAIY ot 22
Technical QUICK Stats ..o e 23
BUSINESS RISK ANAlYSIS ... 24
Code QUAIIRY ...eee e 25
DOCUMENTALION ... e 25
0 LY o) D T=T o= o [T T [T 25
ASHIS OVEIVIBW ..o e 26
Severity DefinitioNS ... 40
AUt FINAINGS ..o 41
@70 o T 1017 T o 52
(@ 18] g1/ 1= 1 ToTo (o] (oo VPP 53
DISCIAIMEIS ... e 55
Appendix
@ Code FIOW Diagramciiiii e 56
o Slither RESUIS LOG ...uviiiiiiii e 72
e Solidity staticanalysis ..., 81
® SOININt LNl .. 90

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contacted by the Thirdfy team to perform a security audit of the 033

Protocol smart contract’s code. The audit has been performed using manual analysis as

well as using automated software tools. This report presents all the findings regarding the
audit performed on July 22nd, 2025.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e The 033 Protocol Contracts handle multiple contracts, and all contracts have

different functions.

O

O

O

033: The 033 contract is a liquid staking wrapper for xTFY, enabling
auto-compounding of rewards, delegated voting, and bribe claiming. It
integrates with external vote and reward modules, supports gasless
meta-transactions, and includes security measures like epoch locks and
whitelisted aggregators.

xTFY: The xTFY is a yield-bearing ERC20 token representing staked TFY
with slashing and vesting mechanics. It enables emissions conversion,
vesting-based exit strategies, rebasing via a VoteModule, and transfer
restrictions to ensure governance control. The contract also supports pause
control, migration, and rescue functionalities via the ACCESS_HUB.
VoterV4: The VoterV4 is the core governance contract of the TFY protocol
that manages voting, emissions distribution, and gauge control. It supports
legacy, concentrated liquidity (CL), and Ichi Vault gauges with UUPS
upgradability, delegation, and per-period vote accounting. It integrates with
the xTFY staking token and VoteModule for modular governance.
AccessHub: AccessHub is the central governance and access control
contract for the TFY Protocol, using UUPS upgradeability and
OpenZeppelin's role-based permissions. It coordinates core modules like

Voter, xXTFY, Minter, 033, and VoteModule, and enables secure execution,

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

upgrades, parameter management, and emergency actions through a
timelock-controlled system.

FeeCollector: FeeCollector is a fee aggregation and distribution contract for
Algebra-based pools within the TFY Protocol. It collects protocol fees from
pools, splits them between the treasury and gauge-linked fee distributors,
and supports withdrawals from the AlgebraCommunityVault under role-based
permissions. It provides granular event logging and safeguards for treasury
and voter-controlled operations.

IchiBribeDistributor: IchiBribeDistributor manages the deposit and
distribution of bribes for a specific IchiVaultGauge based on user voting
weights. Bribes are deposited for upcoming voting periods and later claimed
by voters proportionally to their vote share. The contract ensures only the
authorized VoterV4 can submit vote weights and enforces token whitelisting
for bribes.

IchiVaultGauge: IchiVaultGauge manages time-weighted reward distribution
to users based on their participation in paired Ichi Vaults during each reward
period (weekly). It allows a designated recorder to submit user
"share-seconds" data off-chain and supports both voter-notified and
externally deposited rewards. Whitelisted tokens can be used as rewards,
and users can claim them per completed period.

Minter: Minter handles the emission schedule for the TFY token, minting
weekly rewards with a configurable growth/decay multiplier and enforcing a
max supply cap. It interacts with a Voter contract to distribute emissions and
can trigger a rebase in the xTFY contract. Governance can adjust the
emissions multiplier with a 25% per-epoch deviation limit.

PositionOracle: PositionOracle feeds time-in-range data of Uniswap V3
NFT positions to the Voter contract for use in gauges. It supports normal and
fallback modes for data submission, with role-based access for an operator
and emergency admin. The contract ensures batch-safe updates, enabling
accurate reward distribution even in subgraph or data feed failures.
RevenueToRebaseManager: RevenueToRebaseManager automates the
weekly distribution of protocol revenue by burning a portion of TFY tokens
and rebasing the rest to stakers. It supports community governance to

override distribution ratios per epoch, uses UUPS upgradeability, and

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

enforces security via access control, reentrancy protection, and emergency
pause mechanisms.

o Thirdfy: Thirdfy is a mintable, burnable ERC20 token with permit support,
designed for the TFY protocol’s emissions system. It restricts minting access
to a designated minter contract, which typically handles weekly emissions
based on governance decisions.

o ThirdfyTimelock: ThirdfyTimelock is a governance contract extending
OpenZeppelin’s TimelockController, used to manage delayed execution of
proposals within the TFY protocol. It ensures secure and transparent
upgrades or parameter changes by enforcing a minimum delay between
proposal approval and execution.

o VoteModule: VoteModule is the TFY Protocol's core staking contract,
enabling xTFY deposits for voting power and dual reward streams. It
securely distributes both protocol emissions (rebase rewards) and external
revenue rewards, with cooldown protection, delegation support, and robust
access control via AccessHub.

o ClGaugeFactory: The ClGaugeFactory is a governance-controlled factory
contract for deploying and managing Concentrated Liquidity (CL) gauge
contracts within the TFY Protocol. It handles role assignments (voter,
nfpManager, accessHub) and maintains a registry of created gauges.

o IchiBribeDistributorFactory: The IchiBribeDistributorFactory is a UUPS
upgradeable factory contract used to deploy IchiBribeDistributor instances for
distributing bribes to gauges. It includes access control via AccessHub,
supports governance via VoterV4, and tracks the initial implementation
address.

o IchiVaultGaugeFactory: The IchiVaultGaugeFactory is a UUPS
upgradeable factory contract for deploying IchiVaultGauge instances linked
to Ichi Vault pairs. It supports secure role-based access via AccessHub and
VoterV4, and ensures controlled gauge creation with event logging and
upgrade flexibility.

e This audit scope has included 16 smart contract files, 18 interface files, and 4
libraries files.

e The 033 Token contracts inherit the Initializable, UUPSUpgradeable, ERC20,
IERC20, Pausable, Math, EnumerableSet, ERC4626, SafeERC20,

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ReentrancyGuard, ReentrancyGuardUpgradeable, TimelockController

,ERC20Burn

able, ERC20Permit, Ownable, AccessControlEnumerableUpgradeable

standard smart contracts from the OpenZeppelin library.

e These Open

and hence a

Zeppelin contracts are considered community-audited and time-tested,

re not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
033 Token Smart Contracts
Platform Base Sepolia Network
Language Solidity
File 1 033.sol

File 1 MD5 hash

DAF54C8F51BE891EBFICF38FABD75092

File 2

XTFY.sol

File 2 MD5 hash

3308E3B86EE2CAF4A4C27257DA65A31B

File 3

VoterV4.sol

File 3 MD5 hash

1018D3920C0D2AD09B3EF6DC44C28A01

File 4

AccessHub.sol

File 4 MD5 hash

61CE0333E6840CA58AA0D91977975B04

Updated File 4 MD5 hash BCBS5BEOF967E8CC3C350FAB9B284E5D8

File 5

FeeCollector.sol

File 5 MD5 hash

CE78073E427CB77301F1369FF4F8DE44

File 6

IchiBribeDistributor.sol

File 6 MD5 hash

B890A22058217EF23372B3COFFA4F8A1

File 7

IchiVaultGauge.sol

File 7 MD5 hash

44EE8CEG6F9BFF6C03405A527C2110512

File 8

Minter.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

File 8 MD5 hash

D8CBD5595D732E4601EO0D3B6AC2D8AAQ

Updated File 8 MD5 hash

DC773CA7COF4420F5A04B55B6F638580

File 9

PositionOracle.sol

File 9 MD5 hash

E37C22DDFAS83EF3CABE3F63FD96D035

File 10

RevenueToRebaseManager.sol

File 10 MD5 hash

B3EA4C080F115A027AC2CDDDA16EFF92

File 11

Thirdfy.sol

File 11 MD5 hash

2A47D658BD2E25CA2A5BD43E41D39B6A

File 12

ThirdfyTimelock.sol

File 12 MD5 hash

E12440DE058B29A0CDAS591779D9CE314

File 13

VoteModule.sol

File 13 MD5 hash

ACE9AC889075680456FC8F226894EDF6

File 14

ClGaugeFactory.sol

File 14 MD5 hash

5CEOD77F39BECBE953849F2537E43E08

File 15

IchiBribeDistributorFactory.sol

File 15 MD5 hash

D2B9C569078F340B42E5F04FAASDA131

File 16

IchiVaultGaugeFactory.sol

File 16 MD5 hash

30818913707082F7ACB58AEB914CF031

Audit Date

July 22nd, 2025

Revised Audit Date

August 7th, 2025

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

File 1: 033.sol

Tokenomics:

Name: TFY Liquid Staking Token
Symbol: 033

033 Smart Contract — Key Features:

ERC4626 Vault: Wraps xTFY as a yield-bearing token 033.
Autocompounding: Converts TFY emissions — xTFY —
deposits into VoteModule.

Voting Integration: Submits votes via a Voter each epoch
for protocol optimization.

Rebase Handling: Claims and compounds TFY rebases
into staked xTFY.

Incentive Claiming: Collects rewards via FeeDistributors.
Token Swapping: Swaps non-TFY rewards to TFY using
whitelisted aggregators.

Meta-Transactions: Supports gasless user interactions via
relayer signatures.

Access Control: operator executes logic, accessHub
governs admin functions.

Epoch Locking: Disables deposits/withdrawals near epoch
flips to prevent exploits.

Rescue Mechanism: Safely extracts non-core tokens
without affecting staking state.

Whitelisting: Controlled access for aggregators and

relayers.

YES, This is

valid.

File 2: xTFY.sol

Tokenomics:

Name: xTFY

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Symbol: xTFY

BASIS: Denotes the denominator for basis point calculations
(10,000 = 100%).

SLASHING_PENALTY: Represents a 50% penalty (5000 /
10,000) applied during slashing events.

MIN_VEST: Minimum vesting duration set to 14 days.
MAX_VEST: Maximum vesting duration set to 180 days.

XTFY Smart Contract — Key Features:

Staking Token: Represents staked TFY with rebasing and
vesting logic.

Minting: TFY — xTFY via convertEmissionsToken().
Vesting System: Supports vest creation and linear vest
exits with penalties.

Instant Exit: Exit with 50% slashing penalty (exit()).

Rebase Engine: Emits rewards to VoteModule each epoch
or via emergency.

Transfer Restrictions: Enforced via whitelists (exempt,
exemptTo).

Governance Controls: Timelocked control over operator,
pausing, exemptions, and token rescue.

Pause/Unpause: Emergency control for system safety.

File 3: VoterV4.sol
VoterV4 Contract:

Gauge Management:
o Supports Legacy, CL, and IchiVault gauge types.

o Maps pools < gauges.

e Voting System:

o Epoch-based vote casting with power delegation.
o Vote resets, pokes, and revoting supported.
Emissions Distribution:

o Distributes TFY and xTFY to active gauges.

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

o Separate logic for IchiVault vs CL/legacy gauges.
e Bribe Support:

o Integrates with IchiVault Bribe Distributors.
e Admin Functions:

o Set factories, fee collectors, launcher plugin.

o Set global xTFY:TFY emission split ratio.
e Upgradeable via UUPS,

o with controlled access via AccessHub and governor.

File 4: AccessHub.sol YES, This is
AccessHub — Key Features: valid.
e Role-Based Governance — Uses AccessControl with

timelock and operator roles.

e UUPS Upgradeable — Secure and upgradeable via
DEFAULT_ADMIN_ROLE.
e Centralized Module Control — Manages Voter, xTFY,

Minter, 033, VoteModule.

e Secure Execution — Timelock can execute arbitrary calls
on whitelisted targets.

e Voter Management — Set governor, whitelist tokens, reset
inactive voters.

e XxTFY Ops — Pause/unpause, redeem, migrate operator,
rescue tokens.

e VoteModule Tuning — Adjust cooldowns, rebase stream
duration.

e Quick Reinit — Easily rewire all dependencies

post-deployment.

File 5: FeeCollector.sol YES, This is
E 1] r—KeyF res: valid.
e Treasury Management
o Configurable treasury address and treasuryFees (in

basis points).

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

o Safely collects treasury shares before fee distribution.
e Protocol Fee Collection
o Collects fees from Algebra pools via
collectProtocolFees.
o Handles dead/no gauge gracefully by routing fees to
the treasury.
e Voter Integration
o Read gauge info from IVoter.
o Only voters can update the fee distributor or trigger
vault withdrawals.
e Algebra Integration
o Collects via AlgebraPool.collectProtocolFees.
o Withdraws tokens from AlgebraCommunityVault
(single & batch).
e Robust Debugging
o Emits detailed Debug* events at every step for
transparency.
o Captures success/failure in transfers and role checks.
e Role-Based Access
o onlyTreasury and onlyVoter modifiers.
o Checks Algebra factory role
(FACTORY_WITHDRAWER _ROLE) for vault access.
e Modular Token Handling
o Uses SafeERC20 for secure transfers.

o Transfers remaining fees to feeDist after treasury cut.

File 6: IchiBribeDistributor.sol

Tokenomics:
e DURATION: Defines the length of a voting or bribe epoch,
set to 7 days (1 week).

IchiBribeDistributor — Key Features :
e Bribe Deposits

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

o Accepts bribes for the next voting period.
o Only accepts whitelisted tokens via VoterV4.
o Tracked by totalBribeForPeriod.

Vote-Based Rewards

o Users earn bribes based on vote weight per period.
o earned() calculates unclaimed rewards.
o Claims via claimBribes(tokens, periods).

Secure Distribution

o Tracks:
totalWeightForPeriod
userWeightForPeriod

m claimedBribes

m Prevents double-claiming or over-claiming

Epoch Control
o Periods are 1 week (7 days).

o Rewards can only be claimed for past periods.

VoterV4 Integration
o Only VoterV4 can call _depositVoteWeight().

o Updates user + total weights for upcoming epochs.

Security
o Uses ReentrancyGuard and SafeERC20.
o Reverts on:
m Zero deposit
m Invalid period
m Nothing to claim
m Mismatched input arrays
e Transparent & Modular
o All states are exposed via public mappings/interfaces.

o Clean separation of deposit, claim, and vote logic.

File 7: IchiVaultGauge.sol
IchiVaultGauge — Key Features:

e Reward Distribution Based on Share-Seconds

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

o Uses time-weighted vault shares ("share-seconds") to
calculate user rewards per epoch.
o Reward logic recorded off-chain via
recordShareSeconds() by a shareRecorder.
e Epoch-Based Rewarding
o Rewards are distributed per period (1 week).
o Period data must be recorded after the period ends.
e Vault & LP Rewards:
e Users can:
o Earn rewards based on IchiVault staking.
o Claim rewards via claimRewardsForPeriod.
e Third parties can:
o Deposit external LP rewards for the current
period using depositExternalLPReward().
e Permissions & Access Control:
o shareRecorder: Authorized to record user
share-seconds.
o voter & accessHub: Can whitelist reward tokens,
update recorder, etc.
o Rewards can only be distributed in whitelisted tokens.
e Tracking & Claiming
o Tracks:
m totalRewardByPeriod
m userShareSecondsByPeriod
m claimedRewards
o earnedForVaultShares() returns claimable rewards for
user/token/period.
e Dynamic Whitelisting
o Admin can add/remove whitelisted reward tokens
using:
m whitelistReward()
m removeRewardWhitelist()

o Only whitelisted tokens can be deposited or notified.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Safe Transfers
o Uses _safeTransfer and _safeTransferFrom with
explicit contract code checks and low-level call

protection.

File 8: Minter.sol

Tokenomics:

e BASIS: Used as the denominator for percentage math.

e MAX_DEVIATION: Caps changes to 25% per epoch.

e INITIAL_SUPPLY: Sets the initial token supply to 500 million
TFY.

o MAX_SUPPLY: Sets the maximum cap of TFY tokens to 1.5

billion.

Minter Contract — Key F r
e One-time Initialization
o Sets TFY token, xTFY, voter, emissions, and mints
initial supply.
e Start Emissions
o Begins weekly emissions from epoch 0 and sets
timing variables.
e Weekly Emissions Update
o Mints emit each new epoch, notify the voter, and
trigger xTFY.rebase().
e Dynamic Emission Control
o Allows governance to adjust emissions multiplier
(max £25% per epoch).
e Emissions Cap Enforcement
o Ensures total TFY supply does not exceed 1.5B
tokens.
e Epoch & Period Tracking
o Calculates current period and epoch using

block.timestamp / 1 weeks.

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Access Control

o kickoff and startEmissions: only operator.

o updateEmissionsMultiplier: only accessHub.
Auto-Rebase Trigger

o Calls xTFY.rebase() after emissions each epoch.

File 9: PositionOracle.sol YES, This is
PositionOracle — Key Features: valid.
e Submit LP position data to Voter contract.
e Batch data submission for multiple pools and epochs.
e Fallback mode for emergency wuse (simulates
time-in-range).
e Adjustable fallback factor (default 80% of full range).
e Role-based access:
o operator: submits data.
o voter: sets roles.
o emergencyAdmin: handles fallback mode.
e Tracks last update timestamp for monitoring.
e Emits events for transparency and auditability.
File 10: RevenueToRebaseManager.sol YES, This is
Tokenomics: valid.

COLLECTION_INTERVAL: Sets a 7-day minimum gap
between fee/revenue collections.

VOTING_DURATION: Duration of voting window per
proposal (4 days).

MIN_VOTES_REQUIRED: Minimum 10,000 xTFY needed
for proposal to pass.

MIN_PROPOSAL_THRESHOLD: Requires at least 1,000
XTFY to submit a proposal.
PROPOSAL_REPLACEMENT_THRESHOLD: Needs 5,000

XTFY to replace an active proposal.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

RevenueToRebaseManager — Key Features:
e Automated TFY Revenue Processing

o Collects and distributes TFY revenue weekly:
— Burn (deflation) + Rebase (staker rewards).
e Default 50/50 Burn/Rebase Split
o With support for community-governed overrides.
e Governance Proposals
o XTFY holders can propose and vote on custom
distribution ratios per epoch.
e Rebase Execution
o Sends rewards to VoteModule to distribute as
external revenue.
e Burn Execution
o Burns TFY by transferring to Ox...dEaD.
e Role-Controlled Access
o operator: triggers revenue execution.
o accessHub: governance authority.
e Weekly Collection Interval
o Enforces a 7-day delay between distributions.
e Emergency Pause
o Halts revenue execution in critical situations.
e Analytics Tracking
o Tracks burned, rebased, and collected amounts per
period and in total.
e UUPS Upgradeable
o Supports secure future upgrades with

_authorizeUpgrade.

File 11: Thirdfy.sol
Thirdfy (TFY Token) — Key Features:
e Mintable ERC20 Token

o TFY token with mint() restricted to a designated

minter (e.g., Minter contract).

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Burnable
o Supports burn() and burnFrom() via ERC20Burnable.
e EIP-2612 Permit Support
o Gasless approvals via ERC20Permit (signed
approvals).
e Access-Controlled Minting
o Only the minter address can call mint().
e Token Metadata
o Name: TFY
o Symbol: TFY

o Decimals: 18 (default)

File 12: ThirdfyTimelock.sol YES, This is
ThirdfyTimelock — Key Features: valid.
e Time-locked Governance Execution
o Delays sensitive actions to allow community review
(via minDelay).
e Access Roles
o proposers: Can queue proposals.
o executors: Can execute approved proposals.
o admin: Initial administrator with setup control.
e Inherits OpenZeppelin’s Timelock Controller
o Secure, battle-tested governance time-lock
implementation.
e Used with Governor Contracts
o Typically paired with on-chain voting for decentralized
governance.
File 13: VoteModule.sol YES, This is
Tokenomics: valid.

e duration: Rebases are streamed over a 30-minute period
once initiated.
e cooldown: A 12-hour lock period before a user can claim

rebase rewards.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e PRECISION: Standard decimal precision set to 1e18 for
fixed-point calculations.
VoteM le—Key F I

e Core Role:
o Main staking and reward distribution contract for the
TFY Protocol.
e Staking Mechanics
o Users stake xTFY to gain voting power and earn
rewards.
o Tracks balances, total supply, and delegation.

Dual Reward Streams

1. Rebase Rewards (from xTFY emissions):
o Streamed over time via notifyRewardAmount().
2. External Revenue Rewards (from protocol revenue):
o Sent via notifyExternalRevenue() by

RevenueToRebaseManager.
Time-Locked Mechanics

e 30-minute streaming duration (duration) for emissions.
e 12-hour cooldown before withdrawal or restaking
(cooldown).

e unlockTime prevents reward gaming during rebase events.

Security & Safety

e Immutable staking contract—user funds can’t be seized
via governance.

e ReentrancyGuard protection on all state-changing logic.

e Cooldown exemption managed via AccessHub.

e Safe initialization of new external reward users.

e External rewards can be toggled off for safety.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Governance Integration

e Automatically calls voter.poke() on deposit/withdraw.

e Supports delegation and admin setting for UX.

Accurate Accounting

e Per-user tracking for:
o rewardPerTokenStored.
o externalRewardPerTokenStored.

e Claim both rewards using getReward().

File 14: ClGaugeFactory.sol
ClGaugeFactory — Key Features:

Purpose:

e Factory for creating Concentrated Liquidity (CL) Gauges
used in the TFY Protocol.

e Manages gauge metadata and access control.

Core State Variables

voter: Governance contract allowed to control gauge

creation/settings.

e nfpManager: (To be used) likely for managing NFT-based
LP positions (e.g. Uniswap V3).

e accessHub: Access control contract for broader protocol
permissions.

e lastGauge: Tracks the most recently created gauge.

e gauges: Array of all deployed CL gauge addresses.

YES, This is

valid.

File 15: IchiBribeDistributorFactory.sol
Key Features:

e Factory for deploying IchiBribeDistributor contracts.

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Access-controlled via AccessHub and Voter.

Upgradeable via UUPS pattern (only AccessHub can
upgrade).

Tracks implementation (first deployed distributor).

Emits event on each distributor deployment.

Deployment safety checks for zero addresses.

Admin functions for updating voter, accessHub, and

implementation.

File 16: IchiVaultGaugeFactory.sol

Key Features:

Factory for deploying IchiVaultGauge contracts.
Access-controlled via AccessHub and VoterV4.
Upgradeable using UUPS pattern (authorized by
AccessHub).

Gauge creation with paired Ichi Vaults and snapshot
recorder.

Tracks lastGauge deployed for indexing or automation.
Events emitted on gauge creation and admin changes.

Safety checks for zero address and access control.

YES, This is

valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, the Customer's solidity-based smart
contracts are “Secured”. Also, these contracts contain owner control, which does not
make them fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 1 high, 0 medium, 7 low, and 1 very low-level issues.

We confirm that all issues are fixed in the revised smart contracts code.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner-controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract The solidity version is not specified Passed
Programming The solidity version is too old Passed
Integer overflow/underflow Passed
Function input parameters lack a check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks an event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Business Risk Analysis - 033.sol

Category Result

@ Buy Tax 0%

@ sell Tax 0%

@ cannot Buy No

@ cannot Sell No

@ Max Tax 0%

@ Modify Tax Not Detected
@ Fee Check No

@ s Honeypot Not Detected
@ Trading Cooldown No

@ Can Pause Trade? No

G Pause Transfer? (Transfers aren’t expli(I::i)tIayrtplzljsable, but deposit() is

gated by whileNotLocked)

@ Max Tax? No

@ s it Anti-whale? No

@ s Anti-bot? No

@ s it a Blacklist? No

@ Blacklist Check No

@ canMint? No

@ IsitaProxy? No

() Yes

in?
Can Take Ownership? (Ownership isn’t defined via Ownable, but Operator

can be transferred via transferOperator() by

accessHub)
@ Hidden Owner? No
@ Self Destruction? Not Detected
@ Auditor Confidence High

Overall Audit Result: PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has included 16 smart contract files, 18 interface files, and 4 library files.
Smart contracts contain Libraries, Smart contracts, inheritance, and Interfaces. This is a

compact and well-written smart contract.

The libraries in 033 Protocol are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address, and its properties/methods can be reused many times by

other contracts in the 033 Protocol.

The Thirdfy team has provided scenarios and unit test scripts, which have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an 033 Protocol smart contract code in the form of a file. The MD5 hash of

that code is mentioned in the table above.

As mentioned above, code parts are well-commented. And the logic is straightforward. So
it is easy to quickly understand the programming flow as well as the complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries used in this smart contracts infrastructure are based

on well-known industry-standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

o33.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | whileNotLocked modifier Passed No Issue
3 | onlyOperator modifier Passed No Issue
4 | onlyAccessHub modifier Passed No Issue
5 | submitVotes external access only No Issue
Operator
6 | compound external access only No Issue
Operator
7 | claimRebase external access only No Issue
Operator
8 | claimIncentives external access only No Issue
Operator
9 | swaplncentiveViaAggregator | external access only No Issue
Operator
10 | rescue external access only No Issue
AccessHub
11 | unlock external access only No Issue
Operator
12 | transferOperator external access only No Issue
AccessHub
13 | whitelistAggregator external access only No Issue
AccessHub
14 | whitelistRelayer external access only No Issue
AccessHub
15 | executeMetaTransaction write Passed No Issue
16 | totalAssets read Passed No Issue
17 | ratio read Passed No Issue
18 | getPeriod read Passed No Issue
19 | isUnlocked read Passed No Issue
20 | isCooldownActive read Passed No Issue
21 | deposit internal whileNotLocked No Issue
22 | withdraw internal Passed No Issue
23 | tryGetAssetDecimals read Passed No Issue
24 | decimals read Passed No Issue
25 | asset read Passed No Issue
26 | totalAssets read Passed No Issue
27 | convertToShares read Passed No Issue
28 | convertToAssets read Passed No Issue
29 | maxDeposit read Passed No Issue
30 | maxMint read Passed No Issue
31 [maxWithdraw read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

32 [maxRedeem read Passed No Issue
33 | previewDeposit read Passed No Issue
34 | previewMint read Passed No Issue
35 | previewWithdraw read Passed No Issue
36 | previewRedeem read Passed No Issue
37 | deposit write Passed No Issue
38 | mint write Passed No Issue
39 [withdraw write Passed No Issue
40 | redeem write Passed No Issue
41 | convertToShares internal Passed No Issue
42 | convertToAssets internal Passed No Issue
43 | deposit internal Passed No Issue
44 | withdraw internal Passed No Issue
45 | decimalsOffset internal Passed No Issue
46 | nonReentrant modifier Passed No Issue
47 | nonReentrantBefore write Passed No Issue
48 | nonReentrantAfter write Passed No Issue
49 | reentrancyGuardEntered internal Passed No Issue
xTFY.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyGovernance modifier Passed No Issue
3 | pause external access only No Issue
Governance
4 | unpause external access only No Issue
Governance
5 update internal Passed No Issue
6 isExempted internal Passed No Issue
7 | convertEmissionsToken external whenNotPaused No Issue
8 | rebase external whenNotPaused No Issue
9 | emergencyRebase external access only No Issue
Governance
10 | exit external Passed No Issue
11 | createVest external Passed No Issue
12 | exitVest external Passed No Issue
13 | operatorRedeem external access only No Issue
Governance
14 | rescueTrappedTokens external access only No Issue
Governance
15 | migrateOperator external access only No Issue
Governance
16 | setExemption external access only No Issue
Governance

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

17 | setExemptionTo external access only No Issue
Governance
18 | getBalanceResiding read Passed No Issue
19 | usersTotalVests read Passed No Issue
20 | getVestinfo read Passed No Issue
21 | isExempt external Passed No Issue
22 | tfy external Passed No Issue
23 | name read Passed No Issue
24 | symbol read Passed No Issue
25 | decimals read Passed No Issue
26 | totalSupply read Passed No Issue
27 | balanceOf read Passed No Issue
28 | transfer write Passed No Issue
29 | allowance read Passed No Issue
30 | approve write Passed No Issue
31 [transferFrom write Passed No Issue
32 | transfer internal Passed No Issue
33 | update internal Passed No Issue
34 [mint internal Passed No Issue
35| burn internal Passed No Issue
36 | approve internal Passed No Issue
37 | approve internal Passed No Issue
38 | spendAllowance internal Passed No Issue
39 [whenNotPaused modifier Passed No Issue
40 | whenPaused modifier Passed No Issue
41 | paused read Passed No Issue
42 | requireNotPaused internal Passed No Issue
43 | requirePaused internal Passed No Issue
44 | pause internal Passed No Issue
45 | unpause internal Passed No Issue
VoterV4.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyGovernance modifier Passed No Issue
3 [initialize external initializer No Issue
4 | authorizeUpgrade internal access only No Issue
Governance
5 | setFeeCollector external Passed No Issue
6 | setlchiVaultGaugeFactory external access only No Issue
Governance
7 | setlchiBribeDistributorFactory external access only No Issue
Governance
8 | setGlobalRatio external access only No Issue
Governance

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

9 | setLauncherPlugin external access only No Issue
Governance
10 | reset external Passed No Issue
11 reset internal Passed No Issue
12 | poke external Passed No Issue
13 | vote external Passed No Issue
14 | vote internal Passed No Issue
15 | distribute internal Passed No Issue
16 | getVotes external Passed No Issue
17 | setGovernor external access only No Issue
Governance
18 | whitelist write Passed No Issue
19 | revokeWhitelist write Passed No Issue
20 | killGauge write access only No Issue
Governance
21 | reviveGauge write access only No Issue
Governance
22 | stuckEmissionsRecovery external access only No Issue
Governance
23 | whitelistGaugeRewards external access only No Issue
Governance
24 | removeGaugeRewardWhitelist external access only No Issue
Governance
25 | removeFeeDistributorReward external Passed No Issue
26 | setMainTickSpacing external Passed No Issue
27 | getPeriod read Passed No Issue
28 | createCLGauge external access only No Issue
Governance
29 | createGaugeForCLPool internal Passed No Issue
30 | claimClGaugeRewards external Passed Fixed
31 | claimIncentives external Passed No Issue
32 | claimRewards external Passed Fixed
33 | notifyfRewardAmount external Passed No Issue
34 | distribute write nonReentrant No Issue
35 | distributeForPeriod write nonReentrant No Issue
36 | distributeAll external Passed No Issue
37 | batchDistributeBylndex external Passed No Issue
38 [getAllGauges external Passed No Issue
39 | getAllFeeDistributors external Passed No Issue
40 | isGauge external Passed No Issue
41 | isFeeDistributor external Passed No Issue
42 | claimablePerPeriod internal Passed No Issue
43 | withdrawFromCommunityVault external access only No Issue
Governance
44 | withdrawMultipleFromCommun | external access only No Issue
ityVault Governance
45 | recordPositionsTimelnRange external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

46 | setOracleApproval external access only No Issue
Governance
47 | setPositionOracle external access only No Issue
Governance
48 | setOracleOperator external Passed No Issue
49 | createlchiVaultGauge external access only No Issue
Governance
50 | setShareRecorder external access only No Issue
Governance
51 | initializer modifier Passed No Issue
52 | reinitializer modifier Passed No Issue
53 | onlylnitializing modifier Passed No Issue
54 | checklnitializing internal Passed No Issue
55 | disablelnitializers internal Passed No Issue
56 | getlnitializedVersion internal Passed No Issue
57 | islInitializing internal Passed No Issue
58 | initializableStorageSlot internal Passed No Issue
59 [getlInitializableStorage write Passed No Issue
60 | getReentrancyGuardStorage write Passed No Issue
61 | _ ReentrancyGuard_init internal access only No Issue
Initializing
62 | _ ReentrancyGuard_init_unch internal access only No Issue
ained Initializing
63 [nonReentrant modifier Passed No Issue
64 | nonReentrantBefore write Passed No Issue
65 | nonReentrantAfter write Passed No Issue
66 | reentrancyGuardEntered internal Passed No Issue
67 | onlyProxy modifier Passed No Issue
68 | notDelegated modifier Passed No Issue
69 | _ UUPSUpgradeable_init internal access only No Issue
Initializing
70 | _ UUPSUpgradeable_init_unc internal access only No Issue
hained Initializing
71 | proxiableUUID external Passed No Issue
72 | upgradeToAndCall write access only Proxy No Issue
73 | checkProxy internal Passed No Issue
74 | checkNotDelegated internal Passed No Issue
75 | authorizeUpgrade internal Passed No Issue
76 | upgradeToAndCallUUPS write Passed No Issue
AccessHub.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [timelocked modifier Passed No Issue
3 |initialize external initializer No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

4 | authorizeUpgrade internal | access by default No Issue
admin
5 | reinit external timelocked No Issue
6 | initializeVoter external timelocked No Issue
7_| execute external timelocked No Issue
8 [setNewTimelock external timelocked Fixed
9 [setAuthorizedTarget external timelocked No Issue
10 | isAuthorizedTarget external Passed No Issue
11 | setNewGovernorinVoter external | access by protocol No Issue
operator
12 | governanceWhitelist external | access by protocol No Issue
operator
13 | kicklnactive external | access by default No Issue
admin
14 | setXTFY external timelocked No Issue
15 | setO33 external timelocked No Issue
16 | transferWhitelistinxTFY external | access by protocol No Issue
operator
17 | togglexTFYGovernance external | access by protocol No Issue
operator
18 | operatorRedeemxTFY external | access by protocol No Issue
operator
19 | migrateOperator external | access by protocol No Issue
operator
20 | rescueTrappedTokens external | access by protocol No Issue
operator
21 | transferOperatorino33 external | access by protocol No Issue
operator
22 | setEmissionsMultiplierinMinter external | access by protocol No Issue
operator
23 | setCooldownExemption external timelocked Fixed
24 | setNewRebaseStreamingDurati | external timelocked No Issue
on
25 | setNewVoteModuleCooldown external timelocked No Issue
26 | setAuthorizedTarget internal Passed No Issue
27 | onlyProxy modifier Passed No Issue
28 | notDelegated modifier Passed No Issue
29 | UUPSUpgradeable _init internal access only No Issue
Initializing
30 | _ UUPSUpgradeable_init_unch | internal access only No Issue
ained Initializing
31 | proxiableUUID external Passed No Issue
32 | upgradeToAndCall write access only Proxy No Issue
33 | checkProxy internal Passed No Issue
34 | checkNotDelegated internal Passed No Issue
35 | authorizeUpgrade internal Passed No Issue
36 | upgradeToAndCallUUPS write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

37 | _getAccessControlEnumerable write Passed No Issue
Storage
38 | _ AccessControlEnumerable in | internal access only No Issue
it Initializing
39 | _ AccessControlEnumerable in | internal access only No Issue
it unchained Initializing
40 | supportsinterface read Passed No Issue
41 | getRoleMember read Passed No Issue
42 | getRoleMemberCount read Passed No Issue
43 | getRoleMembers read Passed No Issue
44 | grantRole internal Passed No Issue
45 | revokeRole internal Passed No Issue
46 | initializer modifier Passed No Issue
47 | reinitializer modifier Passed No Issue
48 | onlylnitializing modifier Passed No Issue
49 | checklnitializing internal Passed No Issue
50 | disablelnitializers internal Passed No Issue
51 | getlnitializedVersion internal Passed No Issue
52 | islnitializing internal Passed No Issue
53 | initializableStorageSlot internal Passed No Issue
54 | getlnitializableStorage write Passed No Issue
55 | onlyProxy modifier Passed No Issue
56 | notDelegated modifier Passed No Issue
57 | __UUPSUpgradeable_init internal access only No Issue
Initializing
58 | _ UUPSUpgradeable_init_unch | internal access only No Issue
ained Initializing
59 | proxiableUUID external Passed No Issue
60 | upgradeToAndCall write access only Proxy No Issue
61 | checkProxy internal Passed No Issue
62 | checkNotDelegated internal Passed No Issue
63 [authorizeUpgrade internal Passed No Issue
64 | upgradeToAndCallUUPS write Passed No Issue
FeeCollector.sol
Functions
Sl. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 |[onlyTreasury modifier Passed No Issue
3 | onlyVoter modifier Passed No Issue
4 | setTreasury external [access only Treasury No Issue
5 | setTreasuryFees external [access only Treasury No Issue
6 | setFeeDistributor external access only Voter No Issue
7 | safeTransferWithLogging internal Passed No Issue
8 | collectProtocolFees external Passed No Issue
9 | hasWithdrawerRole read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

10 | withdrawFromCommunityVau | external access only Voter No Issue
It
11 | withdrawMultipleFromComm | external access only Voter No Issue
unityVault

IchiBribeDistributor.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | depositBribe external Passed No Issue
3 [claimBribes external nonReentrant No Issue
4 | earned read Passed No Issue
5 depositVoteWeight external Passed No Issue
6 | getCurrentPeriod read Passed No Issue
7 | nonReentrant modifier Passed No Issue
8 nonReentrantBefore write Passed No Issue
9 nonReentrantAfter write Passed No Issue
10 | reentrancyGuardEntered internal Passed No Issue

IchiVaultGauge.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | ReentrancyGuard external Passed No Issue
3 | earnedForVaultShares read Passed No Issue
4 | claimRewardsForPeriod external nonReentrant No Issue
5 | setShareRecorder external Passed No Issue
6 | notifyVaultRewardAmount external Passed No Issue
7 | whitelistReward external Passed No Issue
8 | removeRewardWhitelist external Passed No Issue
9 | depositExternalLPReward external Passed No Issue
10 | rewardsList external Passed No Issue
11 | rewardsListLength external Passed No Issue
12 | isWhitelisted read Passed No Issue
13 | getCurrentPeriod read Passed No Issue
14 | safeTransfer internal Passed No Issue
15 | safeTransferFrom internal Passed No Issue
16 | nonReentrant modifier Passed No Issue
17 | nonReentrantBefore write Passed No Issue
18 | nonReentrantAfter write Passed No Issue
19 | reentrancyGuardEntered internal Passed No Issue

Minter.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyGovernance modifier Passed No Issue
3 | kickoff external Passed No Issue
4 | updatePeriod external Passed No Issue
5 | startEmissions external Passed Fixed
6 | updateEmissionsMultiplier external access only No Issue

Governance
7 | calculateWeeklyEmissions read Passed No Issue
8 | getPeriod read Passed No Issue
9 | getEpoch read Passed No Issue
PositionOracle.sol
Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyVoter modifier Passed No Issue
3 | onlyOperator modifier Passed No Issue
4 | onlyOperator modifier Passed No Issue
5 | setOperator external access only No Issue

Governance
6 | setEmergencyAdmin external access only No Issue
Governance
7 | setFallbackMode external access only No Issue
Emergency Admin
8 | setFallbackFactor external access only No Issue
Emergency Admin
9 | submitPositionData external access only No Issue
Operator

10 | submitPositionData internal Passed No Issue

11 | batchSubmitPositionData external access only No Issue
Operator

12 | onlyOwner modifier Passed No Issue
13 | owner read Passed No Issue
14 | checkOwner internal Passed No Issue
15 [renounceOwnership write access only Owner No Issue
16 [transferOwnership write access only Owner No Issue
17 | transferOwnership internal Passed No Issue

Thirdfy.sol
Functions

Sl. Functions Type Observation Conclusion

1 | constructor write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

2 | mint write Passed No Issue
3 [name read Passed No Issue
4 | symbol read Passed No Issue
5 | decimals read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 | transfer write Passed No Issue
9 [allowance read Passed No Issue
10 | approve write Passed No Issue
11 | transferFrom write Passed No Issue
12 | transfer internal Passed No Issue
13 | _update internal Passed No Issue
14 | mint internal Passed No Issue
15 | burn internal Passed No Issue
16 | approve internal Passed No Issue
17 | approve internal Passed No Issue
18 | spendAllowance internal Passed No Issue
19 | burn write Passed No Issue
20 | burnFrom write Passed No Issue
21 | permit write Passed No Issue
22 | nonces read Passed No Issue
23 | DOMAIN SEPARATOR external Passed No Issue
ThirdfyTimelock
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyRoleOrOpenRole modifier Passed No Issue
3 | receive external Passed No Issue
4 | supportsinterface read Passed No Issue
5 | isOperation read Passed No Issue
6 | isOperationPending read Passed No Issue
7 | isOperationReady read Passed No Issue
8 | isOperationDone read Passed No Issue
9 | getTimestamp read Passed No Issue
10 | getOperationState read Passed No Issue
11 | getMinDelay read Passed No Issue
12 | hashOperation write Passed No Issue
13 [hashOperationBatch write Passed No Issue
14 | schedule write access by Proposer No Issue
role
15 | scheduleBatch write access by Proposer No Issue
role
16 | schedule write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

17 | cancel write access by Canceller No Issue
role
18 | execute write access by executor No Issue
role
19 | executeBatch write access by executor No Issue
role
20 | execute internal Passed No Issue
21 | beforeCall read Passed No Issue
22 | afterCall write Passed No Issue
23 | updateDelay external Passed No Issue
24 | encodeStateBitmap internal Passed No Issue
VoteModule.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyAccessHub modifier Passed No Issue
3 | onlyRevenueManager modifier Passed No Issue
4 | updateExternalReward modifier Passed No Issue
5 [initialize external initializer No Issue
6 | updateReward modifier Passed No Issue
7 | depositAll external Passed No Issue
8 [deposit write update Reward No Issue
9 [withdrawAll external Passed No Issue
10 | withdraw write update Reward No Issue
11 | notifyRewardAmount external update Reward No Issue
12 | setCooldownExemption external access by No Issue
AccessHub
13 | setRevenueManager external access by No Issue
AccessHub
14 | notifyExternalRevenue external | access by Revenue No Issue
Manager
15 | setNewDuration external access by No Issue
AccessHub
16 | setNewCooldown external access by No Issue
AccessHub
17 | delegate external Passed No Issue
18 | setAdmin external Passed No Issue
19 | lastTimeRewardApplicable read Passed No Issue
20 | earned read Passed No Issue
21 | getReward external update Reward No Issue
22 | claim internal Passed No Issue
23 | rewardPerToken read Passed No Issue
24 | left read Passed No Issue
25 | isDelegateFor external Passed No Issue
26 | isAdminFor external Passed No Issue
27 | getXTFY external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

28 | lastTimeExternalRewardAppli read Passed No Issue
cable
29 | externalRewardPerToken read Passed No Issue
30 | earnedExternalRevenue read Passed No Issue
31 [claimExternalRewards internal Passed No Issue
32 | externalleft read Passed No Issue
33 | emergencyDisableExternalR | external access by No Issue
ewards AccessHub
34 | areExternalRewardsEnabled external Passed No Issue
35 [nonReentrant modifier Passed No Issue
36 | nonReentrantBefore write Passed No Issue
37 | nonReentrantAfter write Passed No Issue
38 | reentrancyGuardEntered internal Passed No Issue
39 | initializer modifier Passed No Issue
40 | reinitializer modifier Passed No Issue
41 | onlylnitializing modifier Passed No Issue
42 | checklnitializing internal Passed No Issue
43 | disablelnitializers internal Passed No Issue
44 | getlinitializedVersion internal Passed No Issue
45 | islInitializing internal Passed No Issue
46 | initializableStorageSlot internal Passed No Issue
47 | getinitializableStorage write Passed No Issue
ClGaugeFactory.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | setVoter external Passed No Issue
3 | setNFPManager external Passed No Issue
4 [setAccessHub external Passed No Issue
5 [createGauge external Passed No Issue
6 | gaugeslength external Passed No Issue
IchiBribeDistributorFactory.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [onlyAccessHub modifier Passed No Issue
3 [initialize external initializer No Issue
4 | setAccessHub external access by No Issue
AccessHub
5 | setVoter external access by No Issue
AccessHub
6 [createDistributor external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

7 | setimplementation external access by No Issue
AccessHub
8 | _authorizeUpgrade internal access by No Issue
AccessHub
9 |[initializer modifier Passed No Issue
10 | reinitializer modifier Passed No Issue
11 | onlylnitializing modifier Passed No Issue
12 | checklnitializing internal Passed No Issue
13 | disablelnitializers internal Passed No Issue
14 | qgetlnitializedVersion internal Passed No Issue
15 | islnitializing internal Passed No Issue
16 | initializableStorageSlot internal Passed No Issue
17 | getlnitializableStorage write Passed No Issue
18 | onlyProxy modifier Passed No Issue
19 | notDelegated modifier Passed No Issue
20 | _ UUPSUpgradeable_init internal access only No Issue
Initializing
21 | _ UUPSUpgradeable_init_un | internal access only No Issue
chained Initializing
22 | proxiableUUID external Passed No Issue
23 | upgradeToAndCall write access only Proxy No Issue
24 | checkProxy internal Passed No Issue
25 | checkNotDelegated internal Passed No Issue
26 | authorizeUpgrade internal Passed No Issue
27 | upgradeToAndCallUUPS write Passed No Issue
IchiVaultGaugeFactory.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyVoterOrAccessHub modifier Passed No Issue
3 | onlyAccessHub modifier Passed No Issue
4 | initialize external initializer No Issue
5 | setVoter external access by No Issue
AccessHub
6 | setAccessHub external access by No Issue
AccessHub
7 | createVaultGauge external | access only Voter Or No Issue
AccessHub
8 | _authorizeUpgrade internal access by No Issue
AccessHub
9 [initializer modifier Passed No Issue
10 | reinitializer modifier Passed No Issue
11 | onlylnitializing modifier Passed No Issue
12 | checklnitializing internal Passed No Issue
13 | disablelnitializers internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

14 | getlnitializedVersion internal Passed No Issue
15 | islnitializing internal Passed No Issue
16 | initializableStorageSlot internal Passed No Issue
17 | getlnitializableStorage write Passed No Issue
18 | onlyProxy modifier Passed No Issue
19 [notDelegated modifier Passed No Issue
20 | UUPSUpgradeable init internal access only No Issue
Initializing
21 | _ UUPSUpgradeable_init_un | internal access only No Issue
chained Initializing
22 | proxiableUUID external Passed No Issue
23 | upgradeToAndCall write access only Proxy No Issue
24 | checkProxy internal Passed No Issue
25 | checkNotDelegated internal Passed No Issue
26 | authorizeUpgrade internal Passed No Issue
27 | upgradeToAndCallUUPS write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss, etc.

High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g., public access to crucial

Medium-level vulnerabilities are important to fix; however,
they can’t lead to tokens lose.

Low-level vulnerabilities are mostly related to outdated,
unused, etc., code snippets, which can’t have a significant
impact on execution

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings
Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Timelock Can Be Set to Zero Address (Bricking Governance): AccessHub.sol

@notice
function setNewTimelock(address _timelock) external timelocked {
require(timelock != _timelock, SAME_ADDRESS()) ;]

timelock = timelock;

The setNewTimelock function allows the current timelock to set the timelock address to
address(0). If this happens, all timelocked functions become permanently inaccessible,

bricking the contract’s governance and upgradeability.

Resolution: Add a check:

require(_timelock != address(0), "Zero address not allowed");
to prevent setting the timelock to the zero address.

Status: Fixed

Medium

No medium severity vulnerabilities were found.

Low

(1) No AccessHub Ownership Transfer Event: AccessHub.sol

@notice

function setNewTimelocK(address _timelock) external timelocked A
require(timelock != _timelock, SAME_ADDRESS());

timelock = _timelock;

When the timelock is changed, there is no event emitted to signal the change.

Resolution: Emit an event when the timelock is updated.
Status: Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

http://accesshub.so

(2) Silent Failure in claimClGaugeRewards: RewardClaimers.sol

try IGauge(_gauges[il).getRewardForPosition(
_nfpTokenlIds[il [j],
_tokens[i

) {

} catch {
try IGaugeV3(_gauges[i]).getRewardForOwner
_nfpTokenIds[il [j],
_tokens[il]

The function uses nested try/catch blocks and silently continues if both interfaces fail. This

may make it difficult for users to know if their reward claim was successful or not.

Resolution: Emit an event or return a status to indicate which claims failed.
Status: Fixed

(3) No Input Validation for Nested Arrays: RewardClaimers.sol

@dev
function claimClGaugeRewards (
address nfpManager,
address calldata _gauges,
address calldata _tokens,
uint256 calldata _nfpTokenIds
) external {
for (uint256 i; i < _gauges.length; ++i
for (uint256 j; j < _nfpTokenIds[il.length; ++j) {
require(
msg.sender ==
INonfungiblePositionManager(nfpManager).ownerQf
_nfpTokenIds[il [j]
I
I'IE;‘Ei.E.I_"I]L:CI ==
INonfungiblePositionManager(nfpManager).getApproved
_nfpTokenIds[i] [j]
I
INonfungiblePositionManager(nfpManager
.isApprovedForAll
INonfungiblePositionManager(nfpManager) .owner0f(
_nfpTokenIds[i] [j]
)l

msg.sender

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

The function claimClGaugeRewards assumes that gauges, tokens, and _nfpTokenlds
are all of the same length and that each _tokens[i] and _nfpTokenlds[i] are valid. If the

arrays are mismatched, this could cause out-of-bounds errors.

Resolution: Array length check require.
Status: Fixed

(4) No Array Length Check in setCooldownExemption: AccessHub.sol

@notice
function setCooldownExemption(
address calldata _candidates,
bool calldata _exempt
external timelocked {

for (uint256 i; 1 < _candidates.length; ++i
voteModule.setCooldownExemption{_candidates[i], _exempt([il);

The function loops over _candidates and _exempt arrays but does not check that their

lengths match, which could cause out-of-bounds errors.

Resolution: require(_candidates.length == _exempt.length, "LENGTH_MISMATCH");
Status: Fixed

(5) No Error Handling for External Calls in claimRewards: RewardClaimers.sol

@dev

function claimRewards (
address[] calldata _gauges,
address calldata _tokens

) external {
for (uint256 i; i < _gauges.length; ++i
IGauge(_gauges[i]).getReward(msg.sender, _tokens[i]);

The function claimRewards calls 1Gauge(_gauges]i]).getReward(msg.sender, _tokensi]);
in a loop without try/catch or error handling. If any call fails, the entire transaction will

revert, potentially preventing users from claiming rewards from other gauges.

Resolution: Wrap the call in a try/catch block to allow the function to continue if one
gauge call fails and Emit an event or return a status to indicate which claims failed.
Status: Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(6) No Input Validation for Array Lengths in: RewardClaimers.sol

@dev
function claimRewards(
address|[] calldata _gauges,
address calldata _tokens
) external {

for (uint256 i; i = _gauges.length; ++i
IGauge(_gauges[i]) .getReward(msg.sender, _tokens[i]);

The function claimRewards assumes that gauges and _tokens arrays are of the same

length but does not check this, which could lead to out-of-bounds errors.

Resolution: require(_gauges.length == _tokens.length, "Array length mismatch");
Status: Fixed

(7) Lack of Event Emission: Minter.sol

@inheritdoc

function startEmissions() external {

ddev
ire(firstPeriod == @, STARTED());

gaev

tfy.mint (operator, weeklyEmissions);

startEmissions does not emit an event for starting emissions. This can make off-chain

tracking and auditing more difficult.

Resolution: Emit events for all significant state changes, especially those that affect
emissions or contract configuration.
Status: Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Unnecessary import statement:

Minter.sol

pragma solidity ~0.8.26;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

import {IERC2@Extended} from ".finterfaCEstERCZBExtended.sol“d
import {IMinter} from "./interfaces/IMinter.sol";
import {IVoter} from "./interfaces/IVoter.sol";

contract Minter is IMinter {

@notice

uint256 public weeklyEmissions;
@notice

uint256 public emissionsMultiplier;
@notice

uint256 public firstPeriod;
@notice

uint256 public activePeriod;

The import statement import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; is
present in Minter.sol, but based on a search of the file, the Math library is not actually used

anywhere in the contract.

Resolution: can be removed to clean up the code.
Status: Fixed

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If
the admin wallet private key were compromised, then it would create trouble. The following

are Admin functions:

033.sol
e submitVotes: Casts votes on specified pools with given weights via the Voter
contract by the Operator.
e compound: Converts any TFY balance to xTFY and stakes it into the VoteModule to

auto-compound rewards by the Operator.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

claimRebase: Claims TFY rebases, converts them to xTFY, and deposits into the
VoteModule for compounding by the Operator.

claimincentives: Claims incentive rewards from FeeDistributors for voted gauges by
the Operator.

swaplncentiveViaAggregator: Swaps reward tokens (non-TFY) to TFY using a
whitelisted aggregator and enforces slippage check by the Operator.

rescue: Allows emergency token rescue by AccessHub while ensuring xTFY
balance/integrity remains unchanged by the AccessHub.

unlock: Unlocks the current epoch for user deposits and withdrawals if cooldown is
complete by the Operator.

transferOperator: Updates the operator address via the AccessHub contract.
whitelistAggregator: Adds or removes a token swap aggregator from the whitelist
via the AccessHub contract..

whitelistRelayer: Adds or removes a relayer from the meta-transaction whitelist via

the AccessHub contract.

xTFY.sol

pause: Pauses all state-changing functions by the governance.

unpause: Unpauses contract operations by the governance.

rebase: Called by Minter to distribute pendingRebase to VoteModule once per
epoch.

emergencyRebase: Allows governance to manually trigger a rebase, skipping
epoch check.

operatorRedeem: Burns 'XTFY" from operator and returns TFY to it by the
governance.

rescueTrappedTokens: Allows governance to recover non-TFY tokens by the
governance.

migrateOperator: Updates the ‘operator’ address by the governance.
setExemption: Sets exemption-from-transfer rules for senders by the governance.

setExemptionTo: Sets exemption-to-transfer rules for receivers by the governance.

AccessHub.sol

_authorizeUpgrade: Restricts upgrades to 'DEFAULT_ADMIN_ROLE".
reinit: Updates protocol contracts and re-authorizes them by timelock.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e initializeVoter: Initializes the "Voter' contract with required addresses by timelock.

e execute: Executes arbitrary function call on a whitelisted contract by timelock.

e setNewTimelock: Updates the timelock address by timelock.

e setAuthorizedTarget: Adds or removes a contract from the execute whitelist by
timelock.

e setNewGovernorinVoter: Updates governor address in the "Voter contract by the
protocol operator-only.

e governanceWhitelist: Whitelists or removes governance tokens by the protocol
operator-only.

e kicklnactive: Resets inactive voters with no upcoming votes by the admin-only.

e setXTFY: Updates 'XTFY" contract address and re-authorizes by timelock.

e setO33: Updates "033" contract address and re-authorizes by timelock.

e transferWhitelistinxTFY: Updates transfer exemption list in "xTFY" by the protocol
operator-only.

e togglexTFYGovernance: Pauses/unpauses 'XTFY' contract by the protocol
operator-only.

e operatorRedeemxTFY: Redeems 'xTFY' and sends TFY to operator by the protocol
operator-only.

e migrateOperator: Transfers operator role in 'xTFY by the protocol operator-only.

e rescueTrappedTokens: Recovers stuck tokens from ‘xTFY' by the protocol
operator-only.

e transferOperatorino33: Transfers operator role in "'033" contract by the protocol
operator-only.

e setEmissionsMultiplierinMinter: Updates emissions multiplier in "Minter" by the
protocol operator-only.

e setCooldownExemption: Adds/removes cooldown exemptions by timelock.

e setNewRebaseStreamingDuration: Updates the rebase streaming duration by
timelock.

o setNewVoteModuleCooldown: Updates cooldown period for vote module by

timelock.

FeeCollector.sol
e setTreasury: Updates the treasury address; only callable by current treasury.

e setTreasuryFees: Sets the treasury fee percentage by only treasury.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e setFeeDistributor: Sets the fee distributor address; only callable by the voter.

e withdrawFromCommunityVault: Withdraws a specific token from the
AlgebraCommunityVault; optionally sends to fee distributor.

e withdrawMultipleFromCommunityVault: Withdraws multiple tokens from the vault in

a batch; optionally sends to fee distributor.

IchiVaultGauge.sol
e setShareRecorder: Allows the governor or accessHub to update the address that
can submit share-seconds.
e whitelistReward: Authorizes a token to be used as a reward by adding it to the
whitelist.

e removeRewardWhitelist: Removes a previously whitelisted reward token.

Minter.sol
e updateEmissionsMultiplier: Governance-controlled function to adjust emissions

multiplier within a 25% bound.

PositionOracle.sol

e setOperator: Voter-only function to assign a new oracle operator address.

e setEmergencyAdmin: Voter-only function to assign a new emergency admin.

e setFallbackMode: Emergency admin can enable or disable fallback mode.

e setFallbackFactor: Emergency admin can set the fallback time-in-range percentage
(max 100).

e submitPositionData: Operator-only function to submit time-in-range and liquidity
data to the voter for a single pool.

e batchSubmitPositionData: Operator-only function to submit position data across

multiple pools in a single transaction.

RevenueToRebaseManager.sol
e _authorizeUpgrade: Authorizes UUPS upgrade; restricted to governance
(‘AccessHub").
e setOperator: Governance can update the operator responsible for triggering weekly

revenue execution.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

governanceCancelProposal: Governance can cancel a proposal in case of
malicious activity or emergency.

emergencyPause: Pauses contract operations in emergency situations.
emergencyUnpause: Resumes contract operations after an emergency pause.
emergencyRecoverTokens: Allows governance to recover ERC20 tokens during an

emergency pause.

Thirdfy.sol

mint: Only the minter address can mint new tokens.

VoteModule.sol

setCooldownExemption: Sets cooldown exemption for a user by AccessHub-Only.
setRevenueManager: Sets the address allowed to stream external rewards by
AccessHub-Only.

notifyExternalRevenue: Streams external rewards from ‘RevenueManager’ Only
callable by authorized RevenueToRebaseManager.

setNewDuration: Updates reward distribution duration by AccessHub-Only.
setNewCooldown: Updates the cooldown period by AccessHub-Only.
emergencyDisableExternalRewards: Emergency function to disable external

rewards for safety Only callable by AccessHub governance.

VoterV4.sol

setFeeCollector: Sets the fee collector address by the contract owner or accessHub
or governor.

setlchiVaultGaugeFactory: Updates the Ichi Vault Gauge Factory address via
governance.

setlchiBribeDistributorFactory: Updates the Ichi Bribe Distributor Factory address
via governance.

setGlobalRatio: Sets the global xTFY emissions ratio; Can only be called by
governance.

setLauncherPlugin: Updates the address of the launcher plugin via governance.
setGovernor: Updates the ‘governor’ address and emits an event by current
governors.

whitelist: Marks a token as whitelisted; callable by deployer or governance.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

revokeWhitelist: Removes a token from the whitelist by the contract owner or
accessHub or governor.

killGauge: Deactivates a gauge, distributes remaining emissions to ‘governor’, and
marks it as killed by the governor.

reviveGauge: Reactivates a previously killed gauge and updates its distribution
state by the governor.

stuckEmissionsRecovery: Allows governance to recover unclaimed emissions from
a dead gauge for a specific period.

whitelistGaugeRewards: Whitelists a reward token for a specific gauge based on
its type by the governor.

removeGaugeRewardWhitelist: Removes a whitelisted reward token from a gauge
by the governor.

createCLGauge: Creates a new CL gauge for an Algebra pool, verifies token
whitelist and feeCollector by the governor.

notifyRewardAmount: Called by "Minter’ to fund this contract with TFY and mark
reward distribution for the current period.

withdrawFromCommunityVault: Withdraws specified amount of a token from the
AlgebraCommunityVault, optionally routing to the fee distributor by the governor.
withdrawMultipleFromCommunityVault: Withdraws multiple token amounts from the
vault in a single transaction by the governor.

recordPositionsTimelnRange: Allow calls from governor, approved oracles, or the
position oracle can record NFT LP position time-in-range data for a gauge.
setOracleApproval: Grants or revokes permission for an address to record LP
position data by the governor.

setPositionOracle: Set the position oracle address by the governor.
setOracleOperator: Sets the operator address in the PositionOracle by the contract
owner or accessHub or governor.

createlchiVaultGauge: Creates a new IchiVaultGauge instance for a pair of Ichi
vaults by the governor.

setShareRecorder: Sets the share recorder address for a specific IchiVaultGauge

by the governor.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ClGaugeFactory.sol

setVoter: Sets the ‘voter address; callable only once or by current
voter/accessHub.

setNFPManager: Sets the 'nfpManager’ address; restricted to ‘voter’ or
‘accessHub'.

setAccessHub: Sets the "accessHub™; can be initialized once or updated by "voter

or current “accessHub'.

IchiBribeDistributorFactory.sol

setAccessHub: Updates the "AccessHub’ address; callable only by the current
"AccessHub'.

setVoter: Sets the Voter contract address; callable only by "AccessHub".
createDistributor: Deploys a new ‘IchiBribeDistributor’ contract and emits
"DistributorCreated’; callable by "AccessHub’ or "Voter'.

setimplementation: Updates the tracked implementation address; callable only by
"AccessHub'.

_authorizeUpgrade: UUPS upgrade hook that restricts upgrades to only
"AccessHub'.

IchiVaultGaugeFactory.sol

setVoter: Updates the authorized "VoterV4' address; callable only by "AccessHub".
setAccessHub: Updates the ‘AccessHub’ address; callable only by current
"AccessHub'.
createVaultGauge: Deploys a new “IchiVaultGauge™ with the specified vault pair and
initial share recorder; callable by "Voter® or "AccessHub".

Deploys a new ‘IchiVaultGauge' with the specified vault pair and initial share
recorder; callable by "Voter® or "AccessHub".
_authorizeUpgrade: Authorize contract upgrades - only AccessHub can authorize

upgrades.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests
based on the given objects as files. We observed 1 high, 7 low, and 1 very low /
Informational issues in the smart contracts. We confirm that all issues are fixed in the
revised smart contracts code. So, the smart contracts are ready for the mainnet

deployment.

Since possible test cases can be unlimited for such a smart contract protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and white
box penetration testing. We look at the project's website to get a high-level understanding
of the functionality of the software under review. We then meet with the developers to gain
an appreciation of their vision of the software. We install and use the relevant software,
exploring the user interactions and roles. While we do this, we brainstorm threat models
and attack surfaces. We read design documentation, review other audit results, search for
similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, and then confirming the issue through code
analysis, live experimentation, or automated tests. Code analysis is the most tentative, and
we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract by the best industry practices at the
date of this report, about: cybersecurity vulnerabilities and issues in smart contract source
code, the details of which are disclosed in this report, (Source Code); the Source Code
compilation, deployment and functionality (performing the intended functions).

Because the total number of test cases is unlimited, the audit makes no statements or
warranties on the security of the code. It also cannot be considered a sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other
statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report alone. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - TFY Liquid Staking (033) Protocol

033 Diagram

© ualegatenn

2 ammreg smcanze
case 3

2 SasTimerearanppcatier) Reentrancy Guard

= SunkackTimec) nSafeERC20 for ERC20

= o
< derazni) H
emare Ay o ErEr
o e o A ———
o e pter

0

e v ordPerTokent) Compoursi 1

mtmrrLati] Gl etiame)

AgetxTEr) claimincenivesi 1

T CwvapinE e TBA G egebor ()

et remint)

AtensSuop ki)

ot Uptat= Time(} i

rewerdPerTchanStorsd() wihtelst Aag oamtor)
o ey

® QrewerdRete()
© GbalanceoT) Atoralassets
& Qumer e erarcPer TakenStorea(). o0
© Astoreckewaraze ApePerion
@ celecen ieLrninckeds)
© merd i ® QusCoakdownactrer)

o s mper) < _asposng
8 sotCosliow nExmptionl) © CAcr) 3
© ssthswburstion()
© seilewCo / '

= QwosbonOrecien '
Jor ERC20

/ @ sawerczo

@ meonancruard
AT

+ sateTrensten)

/ =T e er o)
f * mrySateTranstart) ArmmAssetsn = wreass NOT_ENTERED.
iercrziEmar) & iy STy et o = Qeenveriosnaresn 5 e parenen
{ o -
1 f - =tructor
< forceapprovesy < Srmmtti = Fonneereraresioren
| 8 = 5 ThenResrtant AR
| | e i Caae = = A ey Grardtterecky
= Teiclanaremi) = SuraviewhraD —
- coiioia o * Sprer oy
| = oepasi
= mimi)
-)
= receemis
= _dep)
© Twinaraw
© B decmaoftacts;

int2se _belences
O Aodress—>mapoing scdress=sUIEISE _atowances
9 uImZSE totsiSueRly

O =g _rame

9 string Zeymbes

tranarerc

appravet)

Ciranstenn)

@ e roemsmmaa I

\ rERcao |

\ = @namer)
| = Qmymbo:

| = Qcdecimsist)

cperamorRans s

© remcueTrapnedT sasrel)
miar ste Operatort)

o

® seiExemptianTot)

Spar_UEST)

Qhaas vEStD @ ssrci1ssa

Qasoburecrericd =

el sERCTEn

npaser) e Ter AndC el

retsser) © spproveAnocai
)

erastevew)

el

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ wotetioaute

® Qdelegates()
@ Qadmins()

® QuaccessHub()

® QlastTimeRewardApplicable()
Quearned()

QunlockTime()

getReward()
QrewardPerToken()

© depositAll()

© deposit()

© withdrawAll()

® withdraw()

® QsAdminFor()

© QisDelegateFor()

© Qeft()

@ notifyRewardAmount()

© notifyExternalRevenue()

xTFY Diagram

@ woter

® initislize()

® QelGaugeFactory()
® QnfpManager()
L]

© QgaugeFactory()
© QfeeDistributorF actory()

© Qminter()

® revokeVWhitelist()
© QisGauge()

® JilGauge()
L

© XTFY

ERC20
IXTFY
Pausable

O address operator
© address MINTER
© address ACCESS_HUB
© address VOTE_MODULE
© [ERC20 TFY

© [Voter VOTER

© EnumerableSet Addrs

© uint256 lastDistributedPeriod
O pendingRebase
O Uint256 BASIS

O uint256 MIN_VEST
© uint256 MAX_VEST
© address=>null vestinfo

W\EnumerableSet for EnumerableSet AddressSet

et exempt
© EnumerableSet AddressSet exemptTo

O UINt256 SLASHING _PENALTY

© __constructor_()

© QastUpdateTime()

© QrewardPerTokenStored()

® QperiodFinish()

® QrewardRate()

QbalanceOi()
QuserRewardPer TokenStored()

‘setRevenueManager ()
QearnedExternalRevenue()
QastT]
© QexternalRewardPer Taken() ® Qrfy()
© QexternalLeft() ® QgaugeForPaol()
© QgetXTFY() © QfeeDistributorForGauge()
@ QxTFY() @ QgetPeriod()
© Qvater() @ vote()
® QotalSupply() ® reset()
© setGovernor()

@ stuckEmissionsRecovery()
® whitelistGaugeRewards()
® removeGaugeRewardWhitelist()

© pause()

@ conventEmissionsToken()
® rebase{)

© emergencyRebase()

® exit()

© createVest()

© exitVesi()

® operatorRedeem()

© rescueTrappedTokens{)
© migrateOperator()

QustoredRewardsPerUser()
© delegate()
© setAdmin() @ distributeForPeriod() 8 ::E‘wm::(r)m N
@ QcooldownExempt() @ distributeAll) @ QgetBalanceResiding() : .
@ setCooldownExemption() @ batchDistributeByindex() @ QusersTotalVests() A
® sethewDuration() © Qgetvotes() ® Qetvestinfo() N
© sethewCooldown() © QgetasGauges() /| @ Qexemptn N
® ag, istributors() ® Qnfy() '
© setGiobalRatio() N
© Qisihaclisted() [N
© removeFeeDistributorReward() [N
© QpositionOracle() fl
|
[. meral
/ \ for Enu bleSet AddressSet
| & \
| N \
/ = ,
Math | ERC20 \
@ we | © A
\
© Quadds120 nca '
g a.tmustzu | IERC20Metaciata {]
= QueryAdd() | IERC20Errors
QitrySub() |
< Qurytwa) | V4 @e
© QiryDiv() | o uinl256 _balances
© QryMod() / ‘address=>mapping i
Arays (. Pausable O address: i m _add()
@ Z g-"""."ﬂ"“‘f,” © O uint256 Juls\supr:y
. Contesxt O string _name
© Qsort() © Qsaturatinghul()
e o5 L O string _symbol - "-_czr:;:l:)-f)
@) r=ret1155€mors B & begin() < Qmax() 0 bool_paused ® _vomtrustor_0 = Q at()
B Q_end() < amin(y — @ Qname() m 3 values()
B Q_mioad() © Qaverage() @ Qpaused() ‘Qsymbol() © add()
Q_swap() © Qeeildiv() ©Q_requir ¢] Qudeci) © remove()
Q_castToliin256Amay() & QumuiDiv() @ Q_requirePaused() QetalSupply() © clear()
B Q_castTolin256Comp() © QmuiShr() @ _pause() QbalanceOf() < Qeontains()
< QfindUpperBound() < Qinviod() © _unpause() © Qlength(y
'])
< Qat()
< QmodExp() © approve()
< QiryModExp() ® transferFrom() o Srmient)
= Q_zeroBytes() O ranster()
© Qsart() | © _update()
@ Qlog2() @ _mint()
< Qlogl () | @ _burn()
< Qlog256() @ _approve()
© QunsignedRoundsUp() © _spenaAlcwance()
‘,J~ / | |
. IXTFY .‘I
[ERC20 ,"
® Questinfo() |
Qtty() |
® QVOTER() |
@ QMINTER() (
® QACCESS_HUB() / f
® Qoperator() [{ \
| \

@ QVOTE_MODULE() |
@ QSLASHING_PENALTY() |
® QBASIS() |
® QMIN_VEST()

® QMAX_VEST) |
® QlastDistributedPeriod()
QpendingRebase() |
pause() |
unpause() |
® convertEmissionsToken() |
® rebase()
® emergencyRebase() |
® exitf)y |
© createVest() [
© exitvest()

® operatorRedeem() |
° lelcuuTreppedekunsO f

setExemptionTo()

QgetBalanceResiding)
QusersTotal/ests()
® QisExempt()
® Qget\Vestinfo() l
© context
@ Q_msgSender()
@ Q_msgData()
\ < O_contextSuffixLength()

@ erc20Mstacata

IERC20

@ Qname()
® Qsymbol()
© Qdecimals()

1L/

. IERC20

® QotalSupply()
@ QbalanceOf()
© transfer()
® Qallowance()
© approve()
@ transferFrom()

\J
(@) 1erczogmons|

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

VoterV4 Diagram

© voure

e

mEnaabSeto B

T
< i

i oty

< Sgmamat) T
iy T i
ozt J e -

@ o

ResarioerGuw

0 o

P ganseny 8 et e

o e gorsine e g ke o S P

vy St sl

Py < ey

o Soira ot P e e Y

@ oy = Loanizssano) i e r et e e

& et B oozt ey

& o) e

He i © Yoot @ _commt

o vy R wertinte} o etassa)

&5t © SmwGnatr 10 < Seanara i)

ey 2 Lppwerrana) S SR
2 i, Lo —

S Do Pty

o Sormenrar))

SR 3 et i

@ e & Siowar i)

Py & mmietento

< Qamvetrig

sty
hawTwatrony)

O oyt
/ © EmCAO R Vo

@ o /

e

@ ren @ e

Fowm | < Sy Vo |
& iy & Sny o \

© Qvataloaudel) i v v |

- Sy

Hoo - @ v \ |

s

@ oo Hhe
e . @ oo
e [e
@ P

i) Ao wnseace erscn \

bl e \

) Fre e -,

e 0D |

o S i
3 e
oS e o

e = 3 S |

g o) ‘ssiGovemort) o TARKAARS)

ficherale e atecernyy \ |

) e \

o etec Gae)
2 gy el e) e
5 rmmnecar) pehereveit

et i)
sacChmEser)

ettt
i m—
& Rgamcescn

@ v
S =g
® oo S U
e T
e, 1o
e Hiece . e
H T —
e Hrtrs
D @ s
T e
= P
o e
S || et
Fe
Hited e

® eromo

X

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AccessHub Diagram

@ vorer
o initialize()
© QBASIS()
© Quratiol)
® ehiodute) @ QxTFY() © AccessHub
© QeFsctory(
© Qdelegates() © QelGaugeFactory() et ea ot
© Qadining() Qniptlanager() ‘AccessControlEnmeraietpgradeate
© QaccessHub) © Qgovemar() @ s WPSUpgradeatle
o .
IERG20
© Qearned() © Qaccesstun()
© QunlockTime() © QlauncherPlugin() © Questinfo() © bytes32 PROTOCOL_OPERATOR
© getReward © notifyRewardAmourt() ® Qify) © address fimeloclc
© QrewardPerToken() © distribute © QVOTER(address treasury
© depostall) © QgaugeFactory(@ 103 © QUINTER() © Woter vater
© depost() © QfeeDistributorFactory() © QACCESS_HUB()
© withdrawAll() © Qminter() IERC20 ® Qoperator()
© wihdra © QsAivel) © submitotes() © QUGTE MODULE()
© QshdminFor() © winteist) @ iner © QSLASHING_PENALTY() © alehiodhe volehocuie
® QisDelegateFor() ® revokeWhitelist() B _add) © claimRebase0) ® QBASIS() O address=>bool authorizedTargets
© Qg © QusGauge() B remove() © compoune(© QUIN.VEST) © intialze()
© notfyRewardamount() © hiGauge() © QemssionsHiutpier() Fns o © QUIAT_VEST) s L
© nalifyExtermnalRevenuet) © reviveGaugel) © QactivePeriod() Dot Oy © QastDistributedPeriod() S e
© setRevenuetianager) © poie() © updateperioa) Eavi e © QpendingRebaseq) Ot sem
© QearnedBxternaevenue() ° e OB © pause) o=
 Seimeiemremipino | | o S | |83 S I oo
externalRewardPerToken() il calculateVWeeklyEmissions() O remove() © QgetPeriod() convertEmissionsToken() © setAvthorizedTarget)
@ QexternalLeft() © QgaugeForPool() @ kickoff() & Qcontains() © QisUriocked() @ rebasel © QisAuthorizedTarget()
© QetxTFY() © QfeeDistributorForGauge() © QgetPeriod() S Qlength) © QisCooldownAtive() © emergencyRebase() © setNewGovernorinvater()
OHmg STy OEEErHY) © Qaperstor() SO © governancehelst()
ote © Qualues() © QaccessHub() EonEyesD) © lickinacive()
© QuotalSuppty) © resetl) o= o exivest) © setaTrv()
© QuastlpdteTine() © setGovernor R © cperatorRedeen() © sel033)
© QrewardperTokenstored) © stuclEmssionsRecorery() e © rescueTrapperakens() Ot TR
© QperiocFinish(© whteltGaugeRewards(© migrate Operats e L LA
© QrewarcRate(© removeCaLgeRewarMhteist) © satExempton)) O)
© QalanceOt © createCLGauge() | © setExemptionTol © migrateOperator()
© QuserRewardPerTokenStored() @ claimClGaugsRewards() 1 @ QgetBalanceResiding() © rescueTrappedTokens()
© QstorecRewardsPerUser() © claimincertives() © QusersTotalvesis() O
p st w et o
© setadning) © dstibucForPeriod() | © Qgatvestifo) i |o e e
© QeoodownExemp() © ditributeAll
© selNewRebaseStreaninguraton()
® setCooldownExemption() ® batchDistributeBylndex() {
/ © sefflewVcteliodueCookdown()
© sethiewpuratont) © Qgetvotes / R
@ settiewCooldown() © QgetAlGauges() | =
°
© setGlobalRatio() |
@ Qisvhitelisted(|
© removeFeeDistrisutorReward()
® QpostionCracle() |
| / \
|
|
| L (@) uupsupgradanie \
o (©) AccessControlEnumerableUpgradeable Fr— \
(®) Addresspgraceable @) address © = SrT— JERC1822Proniable \
®Slrm sUpgradeable Access ControlUpgradeable \
B © QusCortract() © senavalue() O address _self \
© bytests_HEX_SYMBOLS $ vt b Skt SN 2 Qataupen) o i © siing LPGRADE INTERFACE VERSION
0 uirtd_ADDRESS LENGTH functionCallAth\alue() © QunctionStaticCall) © transter) T et _ () \
 Quosting) © QinctonstaicCal < funconbetegatecail © Qalowancs) & AccessControrumerable PO © ZULPSUpgradesbl . unchaned() \
© QoHexSiring() © QuerifyCalResufromTargel(y © QuerifyCalResulFromTargel() © approvel) e L 3 © QproxiablelUD) \
° © QuerityCalResut)) H © dupgradeToAndCall) \
W Q revert() u Q_revert() © Q_checkProxy()
2 QgetRokeenberCounty © QcheckotDelegated)
QetRoletiembers() S e
1 B _upgradeToAndCalUUPS() |
\ | |
(©) AcessscontrolUparadeable |
Intalzabie \
Contextlpgradoaic \ \
IAccessControltpgradizable / \ |
@ erctsoruns Ercreschoaseons | ‘
® " btes32 NPLEVENTATION_SLOT \ |
Storagestat < bytess2 ADIAN_SLOT | |
tes32-oRokeDats _roles \ L
et | e S ot o roe | | / |
© QgetaddressSiot() @ e o e ST NG EE A O U256 _gap
PRz ooieer) ‘@’ 595{957' arsplenecaion) IAscessGontrollpgradsable @ __ccessContro_ni() I
< o | & QgetAdmin() © QuetRoleMember() 27Accesr‘sl§’::‘mr;>unn,unche\ned() |
° _setadnin) © QuetRoleliemberCourt) S R /
© Qgetstringsiot() & Change Admin{) & gmwg‘w / /
© QoetBylesSil() < QgetBeacon) o
: getroleAdming | / /
setBeacon) © grartfiole() /
& UpgradeBeaconToAndcal() O |
& _checiorPayabie() 0 | / |
< _selupRole |
© setRoleAdnin() { [
© ZgrantRole() | /
© ZrevokeRole(y |
| . @ erotssporadeaty @ conortporadeaty | |
(@ raccsssconioupsradeatie naizable ntaizabie | y
| /
® QhasRole() | .“ 4
® QgetRoleAdmin() 0 uint256 __gap | /
Oeers) OrEE vy - S/
© revokeRole() © __ERC185_int © ContextInt_unchained \ /
© renounceRole) = _nt() o ortext_rf_ynchaned() \
© ZERC185_Init_unchained() © & _msgSender() \ /
© Qeupportsiterface() © Q_msgData() Vo 4
= ,

(@) mitaizable

O uint8 _intialized
O bool ntialzi

IERC165Upgradeable|

© Qsupportsinterface()

O _disableintiaizers()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

FeeCollector Diagram

@ FeeCaollector

@ IAlgebraFactory

@ lAlgebraCommunityVault

@ QpoolByPair()

@ gaugeFeeSplitEnable()
@ QfeeCollector()

@ QhasRole()

@ QhasRoleOrOwner()
@ grantRole()

@ witheraw()

@ withdrawTokens()

@ changeCommunityFeeReceiver()

@ acceptAlgebraFeeChangeProposal()
@ transferAlgebraFeeManagerRole)
2 acceptAlgebraFesManagerRole()

@ proposellgebraFeeChange()

@ cancelAlgebraFeeChangeProposal()
@ changeAlgebraFeeReceiver()

IFeeCollector

vSafeERC20 for IERC20

O uint258 BASIS

O uint256 treasuryFees

© address treasury

© |Woter voter

© address feeDist

O address algebraFactory

© address algebraCommunity/ault

© hytes32 COMMUNITY _FEE_VMITHDRAWER_ROLE
O hytes32 FACTORY WITHDRAWER_ROLE

@ Voter

& error ACTIVE_GALGE

< address gauge
GAUGE_[MACTIVE

< error ALREADY _WHITELISTED
< address token

< error NOT_AUTHORIZED

< address caller

< error NOT_WHITELISTED

r NOT_POOL

NOT_IMIT
LENGTH_MISMATCH

MO _GALGE

error ALREADY _DISTRIBUTED
< Uint256 period

© error ZERO_VOTE

< address pool

< error RATIO_TOO_HIGH

& uint256 _xRatio

< error VOTE_UNSUCCESSFUL

@ IAlgebraPool

@ Qtoken0()

@ Qtokent()

© Qslatd])

@ colectProtocolFees()
@ Qintiglized()

@ initialize()

® QEBASIS()

@ QxRatiol)

@ QxTFY()

@ QelFactory()

@ QclGaugeFactory()
@ QnfpManager()

@ Qgovernor()

@ QuoteModule()

@ QaccessHub()

@ QlauncherPluging)
@ notifyRewardAmount()
@ distribute()

@ QgaugeFactory()
@ QfeeDistributorFactory()
@ Qminter()

@ QisAlive()

® whitelist()

@ revokeWWhitelist()

@ QisGauge()

@ killGauge()

@ reviveGauge()

@ poke()

@ setMainTickSpacing()

@ QisFeeDistributor()

© Qify()

@ QgaugeForPool()

@ QfeeDistributorForGauge()
@ QgetPerioc()

@ vate()

@ reset()

@ setGovernor()

@ stuckEmissionsRecovery()
@ whitelistGaugeRewards()
@ removeGaugeRewardWhitelist()
@ createCLGauge()

@ claimCIGaugeRewards()

@ claimincentives()

@ claimRewards()

@ distributeForPeriod()

® distributel()

@ hatchDistributeByindex()
Q.get'/otes()

@ QgetAlGauges()

@ QgetAlFeeDistributors()
© setGlobalRatio])

o Qis\hitelisted()

@ removeFeeDistributorReward()
@ QpositionCracle()

(]

@ __constructor__()

@ setTreasury()

@ setTreasuryFees()

@ setFeeDistributor()

< safeTransferWithLogging()

@ QhasWithdrawerRole()

@ withdrawFromCommunity/ault()

@ withdrawMultipleFromCommunity/aulk()
T

'for IERC20

@ SafeERC20

@ IFeeCollector

< safeTransfer()
< safeTransferFrom()

@ Qtreasury()

@ QireasuryFees()

@ setTreasury()

@ setTreasuryFees()
@ setFeeDistributor()
@ collectProtocolFees()

< trySafeTransfer()

< trySafeTransferFrom()

< safelncreasedllowance()

< safeDecreaseflliowance()

< forceApprove()

< transferAndCallRelaxed()

< transferFromAndCallRelaxed()

< appr ndCalRelaxed()
B _calOptionalReturn()
B _calOptionalReturnBool()

@ IERC1363

IERC20
IERC165

@ transferAndCall()
@ transferFromAndCall()
@ approveAndCall()

@ 1E .‘;\’CQO

@ 1ERC163

@ QtatalSupply()
@ QbalanceOf()

@ transfer()

© Qsupportsinterface()

@ Qallowance()
@ approvel)
@ transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ iVater

® initialize()

© QBASIS()

@ QxRatio()

@ AxTFY()

© QclFactory()

® QclGaugeFactory()

@ QnfpManager()

@ Qgovernor()

© QuoteModule()

© QaccessHub()

@ QauncherPluging)

@ notifyReward Amourt()
® distribute()

@ QgaugeFactory()

@ QfeeDistributorFactory()
@ Qminter()

© QsAlive()

@ whitelist()

@ revokeWWhitelist()

@ QisGauge()

@ killGauge()

@ reviveGauge()

@ poke()

@ setMainTickSpacing()

© QjsFeeDistributor()

© Qify()

@ QgaugeForPool()

@ QfeeDistributorForGauge()
© QgetPeriod()

@ vote()

@ reset()

@ setGovernor()

@ stuckEmissionsRecovery()
@ whitelistGaugeRewards()
@ removeGaugeRewarcVWhitelist()
@ createCLGauge()

@ claimClGaugeRewards()
@ claimincentives()

@ claimRewards()

@ distributeForPeriod)

@ distribute All{)

@ patchDistributeBylndex()
@ Qgetvotes()

@ QgetAlGauges()

© QgetAlFeeDistributors()
@ setGlobalRatio()

@ Qis\Whitelisted()

@ removeFeeDistributorReward()
© QpositionOracle()

@) mein

< Quadds1 2()

< amuis2()

© QtryAdd()

< QtrySubl)

O Qryhul()

< QtryDiv()

< QgryMod()

© QsaturatingAdd()
& QsaturatingSub()
< O saturatinghul()
< Qternaryl)

< Qmax()

< amin()

< Qaverage()

< Qeeibiv])

& Qmulbiv()

& amuishr()

< invMad()

< QinvModPrime()
< QmodExp()

& QiryModExp()

B Q_zeroBytes()
© Qsgrt()

< Qog2()

< Qlog10()

< Qlog256()

% QunsignedRoundsUp()

IchiBribeDistributor Diagram

@ SafeCast

© Qolint248()
< Qolint240()
< Qtolint232()
< Qolint224()
< Qolint216()
< Qolint208()
< Qtolint200()
© Qolint1920)
& Qollint184()
< Qolint1 78()
© Qtollint168()
© Qolint160()
& Qollint152()
< Qtolint1 44()
< Qtolint1386()
© Qolint1280)
< Qolint1200)
© Qolint112()
© Qtolint104()
< QolintI6()
< Qolintaa)

< Qolint80()
© Qollint72()

(©) wniribeDistributor

@ QolintBa()
& Qpolints()
< Qolint48()
< Qtolint40()
< Qolint32()
< Qolint24()
© Qollint16()
© Qolints()

< Qolint256()

[BribeDistributor
ReentrancyGuard

nSafeERC20 for IERC20

2 address ichiGauge

© address voter

O uint256=>uint256 totalWeightForPeriod
D uint256==mapping address=>uint256 userWeightForPeriod

© Qolm248()

O uint256==mapping address=>uint256 totalBribeF orPeriod

< Qoln240()

O uint256=>mapping address=>mapping address=>Uint256 claimedBribes

© Qtolnt232()

< uirt256 DURATION

© Qolnt224()
< Qtoint218()
< Qtelnt208(0)
< Qtolnt200()
< Qtolnt82()
& Qoint184()
© Qelnt1 76()

@ __constructor__ ()

@ depositBribe()

© claimBribes()

@ Qearned()

@ _depositVoteVVeight()
@ QgetCurrentPeriod()

< Qolnt1 68()
< Qolnt 60()
< Qtolnt152()
© Qo1 44()
< Qolnt1 36()
< Qtolnt 28()
© Qgolnt1 200)
© Qolnt112()
< Qelnt104()
© Qolrt3B()
© Qolnas()
© Qolnt30()
© Qolt72()
< QolntB4()
< Qtolntsa()
© Qolnt48()
© Qolnt40()
< Qtolnt32()
© Qolnt24()
© Qolnt B()
< Qtolntd()
© QoI 256()
© AoUint()

@ IBribelistributor

@ depostBribe()

® claimBribes()

© Qearned()

@ _deposit\VoteVeight()

o QichiGauge()

o Quoter()

o QiotalBribeForPeriod()
@ QotalWeightForPeriod()
@ QuserWeightForPeriod()
© QclaimedBribes()

T
|
|
|
I
|
|
|
|
|
|
I
|
|
I
|
|
I
I
|
|
I
|
|
I

|
fer IERC20
|
|
|
|
|
|
|
|

Vi

(&) sareencz2o

< gafeTransfer()

< safeTransferFrom()

© trySafeTransfer()

< trySafeTransferFrom()

% safeincreaseAllowance()
< safeDecreaseAllowance()
O forceApprove()

@ transfer AndCalRelaxed()
© transferFromAndCalRelaxed()
< approveAndCalRelaxed()
B _callOptionalReturn()

B _callOptionalReturnBool()

@ ReentrancyGuard

@ IERC1363

IERC20
IERC185

© transferAndCall()
© transferFromAndCall()
@ approvesndCall()

O uint256 MOT_ENTERED
O uint256 ENTERED
O uint256 _status

@ IEIRCZG

@ __constructor__()

B _nonReentrantBefore()

B _nonReentrantAfter()

@ O _reentrancyGuardEntered{)

© QtotalSupply()
@ QhalanceOf()

@ n;chm5

@ transfer()
@ Qallowance()

© Qsupportsinterface()

@ approve()
@ transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

IchiVaultGauge Diagram

@ Voter

inttialize()
QEBASIS()

QxRatio()

XTFY()

QclFactory()

A clGaugeFactory()
QnfpManager()
Qgovernor()
QuuateModulel)
CLaccessHub()
QlauncherPlugin(}
notifyRewardAmount()
distribute()

S gaugeFactary()

Q feeDistributorFactory()
Cyminter()

QisAlive()

whitelist()

@ rerczo

@ QiotalSupply()
© QbalanceOf()
@ transfer()
® Qallowance()
@ approve()
@ transferFrom()

000000000000C000000C000C0Q00C00F0C00CQO00C0CQO0C0C0O00CQ0QOCRO0QC0QO0C0Q0QFOR0O0O0QD0

kevvhitelist()
QisGauge()

killGauge()

reviveGauge()

poke()
sethainTickSpacing()
QisFeeDistributor()

Stfy()

QgaugeForPool()

4 feeDistributorForGauge()
Q getPeriod()

vate()

reset()

setGovernor()
stuckEmissionsRecovery()
whitelistGaugeRewards()
removeGaugeRewardWhitelist()
createCLGauge()
claimClGaugeRewards()
claimincentives()
claimRewards()
distributeForPeriod{)
distribute AN
batchDistributeBylndex()
O getvotes()

Q getAllGauges()

Q getAllFeeDistributors()
setGlobalRatiol)
QisVhitelisted()
removeFeeDistributorRewward()
Q positionOracle()

@ Arrays

wnSlotDerivation for bytes32
@nStorageSiot for bytes32

Qsort()
Q_quickSort()
Q_begin)
a,_end()
Q,_miload()
Q_swap()
O _castTolUint256Array()
Q,_castTolirt256Comp()
QfindUpperBound()
lowerBound()
QupperBound()
QlowerBoundMemary()
CupperBoundMemoryi)
Qunsafefccess()
QunsafeMemoryAccess()
< unsafeSetlength()

T T

QOOOOOONNEERNERD

@ SafeCast

< Qtolint248()
< Qtollint240()
< Qtollint232()
< Qtolint224()
< Qtollint216()
< Qtolint208()
< Qtolint200()
< Qtollint192()
< Qtollint1 84()
< Qtolint1 76()
< Qtollint1 68()
< Qtollint1 50()
< Qtollint1 52()
< Qtollint144()
< Qtollint1 36()
< Qtolint128()
< Qtollint120()
< Qtollint112()
< Qtollint1 04()
< Qtolintas()
< Qtolintas()
< QtoUinta0[)
< Qtolint720)
< QtolintE4()
< Qtolint56()
< Qtollint4s()
< Qtolint40()
< Qtolint32()
< Qtollint24()
< Qtolint1 6()
< Qtolinta()
< Qtollint256()
< Qtolnt248()
< Qolnt240()
< QtoInt232(0)
< Qtolnt224()
© Qelnt216()
< Qolnt208()
< QtoInt200()
< Qtolnt192()
< Qtolnt! 340)
< Qtolnt! 76()
© Quelnt1 68()
< Qolnt1 50
< Qtolnt! 520)
< Qtolnt1 44()
< Qtolnt! 36()
< Qtolnt! 28()
< Qtelnt1 200)
< Qolnt112()
< Qtolnt! 040)
< Qtolntgs)
< Qtolntas()
< Qtolntsn()
< Qtelnt72()
< Qtolnte4()
< Qtolntss()
< Qtolntas)
< Qtelnt4n)
< Qtolnt32()
< Qtelnt24()
< Qtelnt1 8()
< Qtolnta()

< Qtolnt256()
< Qtollint()

@) nath

QOO00OHQQ000Q00Q0000000000000

Qadds12()
Qmuls120)
CiryAdd()
CirySubi)
Qtryhul(y
CtryDivi)
QiryMod()

QsaturatingAdd()
Q,saturatingSub()

@ StorageSiot /

@ IchivaultGauge

ReentrancyGuard

e for

2 address ichivaultD
© address ichivault1

=5 shareRecorder

S5 rewards

© address==bool isReward

< EnumerableSet. AddressSet tokerWhitelists

© uint2S6=>mapping address=>uint256 userShareSecondsByPeriod

© uint256=>uint256 globalTotalShareSecondsByPeriod

@ uint 25 bool peri ded

© wint256=>mapping address=>uint256 totalRewardByPeriod

© address==mapping address==mapping uiNt256=>uINt256 claimedRewards
< Uint256 DURATION

@ __constructor__()

® recordShareSeconds()

@ QearnedForvaultShares()
@ claimRewardsForPeriod()
© setSharsRecorder()

@ netify'aultRewardamount()
@ whitelistReward()

@ removeRewardWhitelist()
@ depositExternalLPReward()
® QrewardsList()

@ QrewardsListLength()

@ Qis\Whitelisted()

@ QgetCurrentPeriod()

< _safeTransfer()

© _safeTransferFrom()

i
]

I

i |

ifor EnumerableSet AddressSet II
' |
! |
. |

Q,saturatinghul{)
Qternary()
Qumax()

aumin)
Qaverage()
QceilDivi)
CumulDivi)
QAmulShr()

@ SlotDerivation

< QgetAddressSiot()

< Q,getBooleansiot()
© QgetBytes32Slot()
< O,getUint256Slot()
< O,getint256SIot()
& QgetStringSiot()

< QercT201Slot()
< Qoffset()

< CuderiveArray()
© QderiveMapping()

< QgetBytesSlot()

Qinviod()
QinviodPrime()
AmnodExp()
CitryModExp()
Q,_zeroBytes()
Qusqri()

Qlog2()

Qlog10()

Alog2s6()
QuunsignedRoundsUpi)

@ EnumerableSet| |
B _add()
_remove() @ ReentrancyGuard
® _clear()
m Q,_contains() O uint256 NOT_ENTERED
B 9_lengthi) O Lint256 ENTERED
W Q_ati) O uint256 _status
<-> :;a:;alues() @ __constructor__()
& remove) B _nonReentrantBefore()
< clear() B _nonReentrantAfter()
& acontains() < Q_reentrancyGuardEntered()
< Qlength()
© Qat)
<& Qualues()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ IWoter

@ initialize()

@ QBASIS()

@ QxRatiof)

® QxTFY()

@ Q.clFactory()

@ QeclGaugeFactory()

@ OnfpManager()

@ Qgovernor)

@ QvoteModule])

@ QaccessHub()

@ O launcherPluging

@ notifyRewardamourt()

@ distribute()

@ O.gaugeFactory()

@ O feeDistributorFactory()
@ Cuminter()

@ QisAlive()

@ whitelist()

@ revokeVWhitelist()

@ QisGauge()

@ kLillGauge()

@ reviveGauge()

® poke()

@ setMainTickSpacing()

@ QisFeeDistributor()

@ Qtfy()

@ QgaugeForPool()

@ QfeeDistributorForGauge()
@ O,getPeriod()

® vote()

@ reset()

@ setGovernor()

@ stuckEmissionsRecovery()
@ whitelistGaugeRewards()
@ removeGaugeRewardWhitelist()
@ createCLGauge()

@ claimCIGaugeRewards()
@ claimincentives()

@ claimRewards()

@ distributeF orPeriod()

@ distribute A0

@ batchDistributeBylndesx()
@ O.getVotes()

@ QgetAlGaugesi)

@ QgetAlFeeDistributors()
® setGlobalRatiol)

@ QisWhitelisted()

@ removeFeeDistributorReward()
@ O positionOracle)

&) matn

< Qadds12()

< Omuls120)

< QiryAdd()

< QtrySubl()

@ Ctryhul()y

< QtryDiv()

O OtryMocl ()

< QsaturatingAdd()
< QsaturatingSub()
< Qsaturatinghul()
< Qternary()

< Qumax()

< Guming)

< Qaverage()

< QeeilDiv)

< gumulDiv()

< QmulShr()

@ CinvMod()

< QinvModPrime()
< GumodExp()

< QiryModExp()

| O,_zeroBytes()
© Qusart()

< Qlog2()

< Qlog10()

@ Qlog256()

“ QuunsignedRoundsUp()

(R) sarecast

Qtolint248()
CtoUint240()
Qtolint232()
CtoUint224()
Qtolint216()
Qtolint208()
Qtolint200()
QtoUint192()
Qtolint184()
Qtolint1 76()
CtoUint168()
Qtolint160()
Ctolint152()
Qtolint144()
CtoUint136()
Qtolint128()
Qtolint120()
Ctolint112()
QtoUint104()
Qtollint96()
QtolintSs()
Ctolint30()
Qtollint72()
Qtolints4()
QtolintSE()
Ctollint48()
Qtollint40()
Qtolint32()
Ctollint24()
Qtolint16()
Qtolints()
Qtolint256()
Ctolnt248()
Qtoint240()
Qtoint232()
Qtoint224()
Qtolnt216()
Qtolnt208()
Qtolnt200()
Ctolnt192()
Qtolnt154()
Ctolnt176()
Qtolnt168()
Ctolnt160()
Qtolnt152()
Qtolnt144()
Qtolnt1 36()
Qtolnt128()
Ctolnt120()
Qtolnt112()
Ctolnt104()
Qtolnt9s()
Qtolntss()
Qtalntso()
Qtolnt72()
Qtolnt6()
AtolIntSE(0)
Qtolnt4s()
Qtolnt40()
Qtoint32()
Qtolnt24()
Ctolnt160)
Qtolnts()
QtolInt256()
Qtollint()

GO0O00000 0000000000000 000 0000000000000 0 0000000000000 00 00000000

Minter Diagram

© winter

IMinter

uint256 weeklyEmissions
uint256 emissionsMultiplier
uint256 firstPeriod

uint255 activePeriod
uint256 lastMuttiplierUpclate
uint256 BASIS

uint256 MAX _DEWVIATION
uint258 INITIAL _SUPPL™Y
uint256 MAX SUPPLY
address operator
address accessHub
address xTFY

address voter
[ERCZ0Extended tfy

00000 ODO|00C000C00000000

__constructor__ ()

kickoff()

updatePeriod()
startEmissions()
updateEmissionsMultiplier()

Q calculateWeeklyEmissions()
AgetPeriod()

QgetEpoch()

@ minter

200000000

S emissionshultiplier])
QactivePeriod()
updatePeriod()
startEmissions()
updateEmissionsMultiplier()

Q calculateWeeklyEmissions()
kickoff()

QgetPeriod()

QgetEpoch()

(@) 1erc20Extended

IERGC20Q
IERC20Metadata
IERC2QPermit

@ mint()
@ burn()
@ transfer()
@ transferFrom(}
@ purnFrom()
T T

| (@) rerc20metadata

IERG20

@ Qname()

@ Qsymbol()

@ Qelecimals()
i

@ xséczo

@ QtotalSupply()
® QhbalanceOf()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

(@ rerczopemit

@ permit()
@ Qnonces()
@ QDOMAIN_SEPARATOR()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ 1Gauge

@ QrewardsList()

@ QrewardsListLength()

@ QlastTimeRewardApplicable()
@ QrewardDatal)

@ Qearned()

@ QearnedByPosition()

@ getReward)

@ getRewardForPosition()

@ getPeriocdRewardForPosition()
@ getRewardAndExit()

@ QrewardPerToken()

D depositall()

@ depositFor()

D deposit()

@ withdraw Al

@ withdraw()

@ Qleft()

D whitelistReward()

@ removeRewardWhitelist()

@ recordPostionTimelinRange)
@ syncPeriod()

@ QgetCurrentPeriod()

@ O positionHash()

@ notifyRewardAmount()

o Qigihitelisted()

PositionOracle Diagram

@ Voter

@ recordPostionsTimeinRange()

@ PositionCracle

Ownable

@ _ constructor__{)

@ setOperator()

@ setEmergencyAdmin)

@ setFallbackModel)

@ zetFallbackFactor)

@ submitPostionDatal)

< _submitPositionDatal)

@ batchSubmitPositionDatal)

@ IC;m.rnahIe

Context

O address _owner

@ _ constructor__{)
@ Qowner()

o O _checkOwner()

@ renouncelwnershipl)
@ transferCwnership()
< _transferOwnership()

!

@ ;Dnteﬂ

o O,_megSender()
< O,_msgDatal)
< O_contextSuffixLengthi)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

RevenueToRebaseManager Diagram

@ woter

© ntalize()

© Qpasis()

© QxRatiof)

© QuTFY()

@ QofFactory()

© QelGaugeFactory(y
© Qfphanagery

@ Qgovamar()

® QauncherPlugin(}

© notifyRewardAmourt()
© dstibute()

© QgaugeFactory()

® QfeeDistributorFactory()
© Qminter ()

© Queive()

© whtelst()

© revokevwhitelist()

© reviveGauge()

© poke()

© selainTickSpacing()

© QisFeeDistrbtort)

o ary)

© QgaugeForPool()

© QecDistributorForGauge()
© QgetPerioc)

© vate(y

@ resei()

© setGovermor()

© stuckEmissionsRecovery()
e)

@ voteoaue

© Qelegates()

© QacsessHub()

© QastTineRewardApplcable()
© Qearned()

© QunlockTime()

© getReward()

© QewardPerToken()

© depostAll)

© QisAdminFor()
© QsDelegateFor()

© Qe
 nolifyRewardAmount()

© noifyExternalRevenue()

© setRevenuelanager()

© QeamedExtemalRevenue()
°

@ IAccesstiub

© Qtimeiock()

© Qireasury()

© Qyatehlodule()

© Quater()

© QatthorizedTargets()
© intialize()

© reint()

© intialize\Vater()

© execute()

© setfiewTimelock()

© setauthorizedTarget()
© QisAuthorizedTarget()
°

@) rercraes

IERG20
IERC165

© QexternaRewardPerToken()
© QexternalLeft))

@ QgetxTFY()

© QxTFY()

© Queter()

@ QotalSuppiy()

© QastUpdateTime()

© QrewardPerTokenstored()

P

°

© createCLGauge()

© claimCiGaugeRewards()
© claimincertives()

© claimRewards()

© batchDistributeByindex()
© Qgetvotes()

© QgetAlGauges()

© QgstAlFeeDistributors()

© QpostionOracief)

© removeFeeDistribuorReward()

°)
© Qpaanceof()
°

°

© kickinactive()

© setXTFY()

© 5et033()

© transferiihitelistnxTF V()
© togglexTF YGovernance()
© operatorRedeemxTFY()
© migrate Operator ()

© rescueTrappedTokens()
© transferOperatorino33()
© setEmissionshiutiplierinhinter()
© setCooldownExemption()
°

© transferAndCal)
© transferFromAnaCai()
© approveAndCall()

© QstoredRewardsPerUser()
© delegate()

© sefNewVotebocieCooldown()

© setadming)

© QooldownExempi()

© setCooldownExemption()
© sethiewDuration()

© setliewCooldownt)

@ Address (@) storagesiot

© sendvalue()

~
/

(©) RevenuzToRzhaseManager

Initializable
ReentrancyGuardpgraceable
UUPSUpgradeable

MSafeERC20 for JERC20
© address voteModule:

© address tfyToken
© address accessHub

© address operator
© winl256 COLLECTION_INTERVAL
© unt256 lastColectionTime
© bool emergencyPaused
i

© Dist atio

© unt256=>Dist

© uNt256=>DistrbutionProposal propossls
© unt2s Aot

unt256=>null proposalHistoryForPeriod
© uint256 nextProposalld

© UNt256 VOTING_DURATION

© UNt256 MIN_VOTES_REQUIRED

© uint256 MIN_PROPOSAL_THRESHOLD

© UNt256 MAX_PROPOSALS_TO_CHECK
© Wint256 totalTF YBurned

© unt256 totalRevenueColiected
25651

o revenuePerPeriod
© unt2s 1255 burnedPerPeriod
© uint25 (255 rebasePerPeriod

O uint256 _gap

© intalize()
% _authorizeUpgrade()

© executeRebase()

© QgetPeriod()

© createDistibutionProposal()

© voteOnProposally

© _getActiveRstiof)

© Teheek AndExeciteProposals()
© sctOperator()

© governanceCancelProposal()

© QetProposainfo()

© Qgetactveproposal)
© QgetProposalistory()
© QetPerioustats()

© QetTotaistats ()

© QustAvailableRevenue()

© emergencylng

pause()
© emergencyRecoverTokens()

© unt256 PROPOSAL_REPLACEMENT_THRESHOLD

for IERC20

)
(@) sareercao

(© uursupgradeavie

© functionCal()

© functionCallithValue()
© QfunctionStticCall)
 functionDelegateCall)

© Qgetaadresssiotn)
© QgetBoslzanSiet()
© QgetBytes32Siot()
© Qgetlin2s8Sioty)

o

© QuerifyCalResut()
B Q_revert(

© QgetStringSiet()
© QgetBytesSiot()

@) rerc2o o

© sateTransfer()
© safeTransferFrom()

© Quetaisupply()
© Qal

‘ @ rereres |

)
 trySaeTransferFrom()
i

© transfer()
© Qalowance()

© Qsupportsinterface()

© approve(y
© transferFrom)

Beacon

@) rerciser]

@) ercrosrutis

by
© bytes32 ADIN_SLOT
© bytes32 BEACON_SLOT
© Qgetimplementation()

B _setimplementation()

o I

© Qunplementation()

| —

© Qgetadning
B _setdmin()
© changeAdmin()
© QgetBeacon()
B _setBeacon

2532 IMPLEWENTATION_SLOT

()
© UpgradeBeaconToAndCall)
B _checknonPayabler)

 safeDecreaseAllowance()
 forcepprove()
© transferAndCalRelaxed()

© transferFromAndCalRelaxed()

< approveAndCalRelaxed()
B _callOptionalReturn()
B _callOptionaReturnBook)

| Inttializable

O uint258 ENTERED

O uint256 NOT_ENTERED

(o532 ReentrancyGuardStorageL ocation

B Q_getResntiancyGuardstorage()
© _ ReertraneyGuard_int()
© _ReertrancyGuard_int_unchained(y
\ = nonReertrartBefore()
B _nonReertrantafter()
© @ _reertrancyGuardEntered(y

(©) nitanzanie

O bytes32 NITIALIZABLE_STORAGE

© & _checkntlizin()

© _disablelnitializerst

© @ _getintializedVersion()
© QTsinitlizing()

© QjtializableStoragesiot()
B Q_getintiaizableStorage()

Inttializable
IERG1822Proxiable

O address __self

© string UPGRADE _INTERFACE_VERSION

© _UUPSUpgradeable_init()

© 0PSUpgradeabe_int _unchained()
© QproxiablsLUD()

© dupgradeToAndCall()

© Q& _checkProny)

© QeheckNotDelegatec)

© _authorizeUpgrade()

B _upgradeToAndCalluUPS()

ERC1822Proxiable

© QproxableUUD)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Thirdfy Diagram

(©) hirary

ERC20

< QgetAddressSlot()
© QgetBooleanSiot()
© QgetBytes32Siot() =
© QgetUint256Slot()

@ ShortStrings

ERC20Permit

bytes32 FALLBACK _SENTINEL

‘@ IERC1155Errors

© address minter

© mint()

ERC20Burnable

© _constructor__()

(©) ercaoremit

[ERC20

| IERC20Permit
| @ERC?UBumahle EIP712

| o Nonces
| ERC20

| © burn()
“| @ burnFrom(y

O bytes32 PERMIT_TYPEHASH

© permit()
® Qnonces()

© __construetor_()

© QDOMAIN_SEPARATOR()

(©) Erco

Context

IERC20
IERC20Metadata
IERC20Errors

O address=>Lint256 _balances
O address=>mapping address=-uint 256 _:

O Urt256 totalSupply

| O string _name

O string _symbol

(OERE

| © _constructor_()
| @ Qname()

| © Qsymbol()

| © Qecimals()

© QotalSupply()

‘ © Qbalanceof()

© transfer()
© Qallowance()

‘ @ approve()

© transferFrom()
© ransfer()

| © Zpdate()

| < i)

| % Zoun()

| < _approve()

| © Zspendallowance()

@ IERC20Permit

R
@ Nonces

© permit()
© Qnonces()

© QDOMAIN_SEPARATOR()

O address=>uint256 _nonces

© Qnonces()

< _useNonce()

JERC5267

O bytes32 TYPE_HASH
O bytes32 _cachedDomainSeparator
O UInt256 _cachedChainld

O address _cachedThis

O bytes32 _hashedName

O bytes32 _hashedVersion

O string _nameFalback

O string _versionFallback

>

[L
© Context

@ IERC20Eriors

oq, 0
© Q_msaData()
© Q_cortextSuffixLength()

—_—

< _useCl)

@) iere

IERC20

® Qname()
© Qsymholf)
© Qgecimals()

| ‘

@) serczo

© QotalSupply()
© Qpalanceof()
© transfer()
© Qallowance()
© approve()
© transferFrom()

[—{

© Q_domainSeparator\'4()
B Q_buildDomainSeparator)
© Q_hashTypedData\/4()

© Qeip71 2Domain()

< Q_EP712Name()

< Q_FPT12Version()

(@) sercazsr

@ Qeip712Domain()

This is a private and confidential document. No part of this document should

be disclosed to

Email: audit@EtherAuthority.io

rd party without prior written permission of EtherAuthority.

@ lAccessControl

ThirdfyTimelock Diagram

@ Address

< sendvalue()

< functionCall()

< functionCallWithalue()

< O functionStaticCall()

< functionDelegateCall()

< QuverifyCallResutFromTarget()
< QuerifyCalResult()

H Q_revert()

@ AccessControl

Context

ERCIES

lAccessControl

O bytes32==RoleData _roles
& bytes32 DEFAULT_ADMIN_ROLE

@ grantRole()

@ Qsupportsinterface)
@ QhasRole()

& Q,_checkRole()

@ QgetRolefdming

@ revokeRole()

@ renounceRole()
< _setRoleAdmin)
< _grantRole()

A @ _revekeRaole()

(©) ThiratyTimelock

TimelockController

@ _ constructor__ ()

@ TimelockController

AccessControf
ERCT21Holder
ERC1155Holder

= bytes32 PROPOSER_ROLE

& bytes32 EXECUTOR_ROLE

2 bytes32 CAMCELLER_ROLE
O uint256 _DONE_TIMESTAMP
O bytes32==Uint256 _timestamps
O uint256 _minDelay

1 ® @executeBatchi)

@ @__constructor__()
@ Qsupportsinterface()
@ QisOperation()

@ QisOperationPending()
@ QisOperationReady()
@ QisOperationDone()
@ QgetTimestamp()

@ QgetOperationState()
@ QgetMinDelay()

@ QhashOperation()

@ QhashOperationBatch(()
@ schedule()

@ scheduleBatch()

| _schedule()

@ cancel()

@ dexecute()

@ _execute()

B Q_befareCall)
| _afterCall()

@ updateDelay()

< O_encodeStateBitmap()

(©) Erc1155HoIder

ERC1E5
IERCT1155Receiver

@ Qsupportsinterface()
@ onERC1155Received()
@ onERC1155BatchReceived()

@ QhasRole()

@ QgetRoleAdmin)
@ grantRole()

@ revokeRole()

@ renounceRole])

@ C n-ntext

~J P
(©) ercies

< O_msgSender()
< O_msgData()

JERC165

@ Qeupportsinterface()

A |
(©) ERCT21HoIder

IERCT21Receiver

@ onERCT21Received()

@ 1erc1155Receiver

IERC185

@ 1ercr21Receiver

@ onERC1155Received()
@ onERC1155BatchReceived()

v

-

@ iercrss

@ Qsupportsinterface()

@ onERC721Received()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

(®) sarecast

@ woter

@ intialize()

@ QBASIS()

@ O xRatio()

@ QxTFY()

@ QelFactory()

@ QelGaugeFactory()

@ QnfpManager()

@ Qugovernor()

@ QoteModule()

® QaccessHub()

@ QlauncherPlugin()

@ notifyRewardAmounrt()

@ distribute()

@ QgaugeFactory()

@ QfeeDistributorFactory()
@ Cuminter()

@ QisAlive()

© whitelist()

@ revokeWhitelist()

@ QisGauge()

@ kilGauge()

@ reviveGauge()

@ poke()

@ setMainTickSpacing()

@ QsFeeDistributor()

@ Qify()

@ QgaugeForPool()

@ QfeeDistributorForGauge()
© QgetPeriod])

@ vote()

@ reset()

@ setGovernor()

@ stuckEmissionsRecovery()
2 whitelistGaugeRewards()
@ removeGaugeRewardvhitelist()
@ createCLGauge()

@ claimClGaugeRewards()
@ claimincentives()

@ claimRewards()

© distributeForPeriod()

@ distributeAl)

@ patchDistributeBylndex()
© QugetVotes()

@ QgetAlGauges()

@ OgetAlFeeDistributors()
@ setGlobalRatio()

@ QisWhitelisted()

@ removeFeeDistributorReward()
@ QpostionCracle()

@) warn

< Qadds12()

@ Omuls12()

@ QfryAdd()

& QytrySub()

< Qtryul()y

< QytryDivi)

< Qtryhad()

< QusaturatingAdd()
@ OysaturatingSub()
@ Qusaturatingul()
< Qternary()

© Qumax()

< Qumin()

< Qaverage()

< OucelDivi)

< aumuIDiv)

@ OmulsShr()

@ QyinvMod()

< QinvModPrime)
> QumodExp()

© QtryModExp()

B OQ_zeroBytes()
@ Qi)

© Qlog2()

< Qlog10()

< Qlog256()

< QuunsignedRoundsUp()

< Qolint248()
< QtoUint240()
< Qtolint232()
© Qolint224()
< Qollint216()
© Qolint208()
< Qtolint200()
< QtoUint192()
< QtoUint184()
< Qtolint1 78()
< Qtollint1 68()
< Qollint1 60()
& Qtolint1 52()
< Qtolint! 44()
< QtoUint 36()
< QtoUint 28()
< Qtolint1200)
< Qtollint112()
© Qolint1 04()
< Qtolintgs()
< Qtolintss()
< Qtolints0()
< QtoUintT2()
& AtoUintE4()
< Qolint3E()
< Qolint4a()
< Qolint40()
< Qtolint32()
< Qtolint24()
< Qtolint1&()
< Qtollinta()
© Qolint256()
< Qolnt248()
< Qolnt240()
< Qtolnt232()
< Qtolntz24()
© Qtolnt216()
© Qtolnt208()
< Qoint200()
© Qoint192()
< Qoint184()
< Qtolnt1 76()
< Qtolnt1E8()
< Qoint160()
< Qtolnt152()
< Qolnt1 44()
< Qolnt1 38()
< Qoint128()
< Qolnt120)
© Qtoint112()
< Qoint104()
< Qtolngs()
© Qolntss()
< Qolntsa()
< Qoint72()
© QtolntB4()
© Qtolnts6()
< Qtolntas()
< Qtolnt40()
© Qolnt3z()
< Qolnt24()
< Qtolnt1B()
< Qtolnts))

© Qtolnt256()
< QtoUint()

VoteModule Diagram

@ wrey

IERCZ0

Questinfa()

Qtfy()

QWOTER()

QMIMTER()
QACCESS_HUB(
Qoperator()
Q\/OTE_MODULE)
QSLASHING_PENALTY()
QBASIS()
QMIM_VEST()
QMAX_VEST()

@ JastDistributedPeriod()
QpendingRebase()
pause()

unpause()
convertEmissions Token()
rebase()
emergencyRebase()
exit()

createVest()

exitVest()
operatorRedeem()
rescueTrappedTokens()
migrateOperator()
setExemption()
setExemptionTo()
Q,getBalanceResiding()
® QusersTotalvests()

@ QisExempt()

@ QgetVestinfo()

o000 OOOOOOOOOOOOOOOOODDOOROOS

@ ierczo

@ QiotalSupply()
@ QbalanceOf()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

(©) votsmoduse
WoteModule

ReentrancyGuard
Initializable

© address accessHub

O gddress xTFY

O address voter

O [xTFY stakingToken

© [ERC20 underlying

© address revenueManager

© uint256 duration

9 uint256 cooldown

O uint256 PRECISION

O uint256 totalSupply

O uint256 lastUpdateTime

O uint256 rewardPerTokenStored
O uint256 periodFinish

O uint256 rewardRate

9 uint256 unlockTime

uint256 balanceQf

-address delegates
address admins

bool cooldownExempt
© uint256 externalRewardRate
258 externalPeriodFinish

256 externalLastUpdateTime

O uint256 MAX_SAFE_MULTIPLIER
© hool externalRewardsEnabled

uint256 userRewardPerTokenStored
uint256 storedRewardsPerlser

uint256 userExternalRewardPerTokenStored

@ __constructor__()

@ intislize()

@ depositAlll)

@ deposit()

@ withdrawAll7)

D withcraw()

@ notifyRewardAmourt()

@ setCooldownExemption()

@ getRevenusManager()

@ netifyExternalRevenue()

@ setMewDuration()

@ sethlewCooldown()

@ delegate])

@ setAdmini)

@ QastTimeRewardApplicable()
@ Qearned()

o getReward()

< _claim()

@ QrewardPerToken()

o Qeft()

@ QisDelegateFor()

@ QisAdminFor()

@ QgetXTFY()

@ QastTimeExternalRewardApplicable()
@ QexternalRewardPerToken()

@ QearnedExternalRevenue()

< _claimExternalRewards()

@ Qexternalleft()

@ emergencyDisableExternalRewards()
@ QareExternalRewardsEnabled)

@ wotenocue

@ Qdelegates()

@ Qadmins()

@ QuaccessHub()

@ QlastTimeRewardApplicable()
@ Qearned()

@ QunlockTime()

@ getReward()

A rewardPer Token()
depositAll()

deposit()

withcrawe &11()

withcraw ()

QisAdminFor()
QjsDelegateFor()

Qleft()
notifyRewardAmount()
notifyExternalRevenue()
setRevenueManager()
QearnedExternalRevenue()

AexternalRewardPerToken()
QexternalLeft()

OgetTFY()

QxTFY()

Quoter()

QuotalSupply()
QastUpdateTimel)

A rewardPer TokenStored()

A periodFinish()
QrewardRate])
QbalanceOf()
QuserRewardPer TokenStore()
QstoredRewardsPerUser()
delegate()

setAdming)

A cooldownExempt()
setCooldownExemption()
sethlewDuration()
sethlewCooldown()

eaco0d00o00O0OOOOOOCOOODODOODODOOOOOODOOOOD

QlastTimeExternalRewardApplicable()

(©) mializabie

@ ReentrancyGuard

O bytes32 IMTIALIZABLE_STORAGE

O uint256 MOT_EMTERED

© _checklnttializing()

@ _disableinttializers()

< O _getintialized\/ ersion()
< O_isinttializing()

< O_inttializableStorageSiot()
B O,_getinttializableStorage()

O uint256 ENTERED
O uint256 _status

@ __constructor__()

B _nonReentrantBefore()

B _nonReentrantAfter()

@ @ _reentrancyGuardEntered()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ClGaugeFactory Diagram

@ ClGaugeFactory

ICIGaugeFactory

2 address voter

O address lastGauge
2 address nfpManager
o address accessHub
O address gauges

@ getVoter()

@ sethFPManager()
@ zethccessHubi)
@ QecreateGauge()
o QgaugesLengthi)

@ ICIGaugeFactory

@ createGauge()
@ Qgauges()
@ Qgaugeslendgth()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(@) saecast

© Qount248)
© Qolint2400)
© Qolint232()
© QUoUnt224)

@ vowr

© intaize()

© QeFactory)
© QelGaugeFactory()

© Qnphtanager()

© Qgovernor()

© Qotelodhie()

© QaccessHub()

© QuauncherPluging

© notfyRewardamourt()
© dstribute()

© QgaugeFactory()

© QecDistributorFactory()
© Qminter()

© kilGauge()
© reviveGauge()

© poke()

© sethfainTickSpacingf)

© QsFeeDistributor()

o Qi)

© QgaugeForPool)

© QfeeDistributorForGauge()
© Qgetperiod()

© reset()

© setGovernar

© stuckEmissionsRecovery()
© whtlstGaugeRewards()
© removeGaugef

© createCLG:

D
© distrbuteF orPeriod()
© distributeAl)
© batchDistributeByiniex()
© Qgetvates()

RewardAitelst()

© Qolint72()
© Qolints4)
© Qolintss()
© Qolint4s)

© Qolint1 &)
© Qolintg)
© Qolint2s8()
© Qont248)
© Qoint2400
& Qont2320

© Qolnt144)
© Qolnt138)
© Qelnt128()
© Qoint1200
© Qoint1120
© Qoint104)

© QgetAllGauges() © Qonz6()
© QgetAlFecDistibutors() © QolnEB()
© setGiobaatio © Qons)
© Qsinitelstec © Quonra)
© removeFeeDistrutorReward() © Qi)
© Qposiiondrack) © atontss)
© Qontas)
© Qortany
© Quon@20
© Qom0
© Quortts)

toints()
© Qolnt256()
© Qolint)

@ erors

IchiBribeDistributorFactory Diagram

® war

© Qaaasi2)
© Qmus12)

© Qnviod()
© QunvModPrime()

Jog256()
© QunsignedRoundsLp()

@ oo

@ nibevior

mapping
© Uint256=>mapping address=>mapping adlress=>.int256 climecBribes
Ou ion

IBribeDistributor
ReentrancyGuard

NSaReERC20 for IERC20

© address ichiGauge

© address voter

© UnK256=>unt256 totalWelghtForPeriod

© Uint256=>mapping address=>.int256 userelghtForPeriod
ing address==Uint256 totalBribeF orPeriod

© Unt286=>m

constructor_()
© GeposiBribe()

© claimBribes()

© Qeamed)

© _depostyoteweight()
© QgetCurrentPeriod()

for IERG20
'

/ 7

. @) sarecrc20 o

@ o

IERC20
IERC165

© transferandcall)
© ansferFromAndCail)
© approveandcal()

®

© depositBribe()
© clamBribes()
© Qeamed)
°

@ rommamocu

& sateTransfer()
°

© trySaeTransfer()
© trySafeTransferfrom()
o

© functionDelegateCall)

°
© QgetUirt2seSiot)
o

 sendvalue

e T [@ |

 tunctoncaanaiue(| |
(o Qmpementationt |

© QuerifyCalResut()
B Q_revet)

© QgetStringSiot()
© QgetBytesSiot()

® encreanums

© bytes32 ADIN_SLOT
© byles32 BEACON_SLOT

© Qgetimplemertation()

< changeAdnin()
& QgetBeacon()
B _setBeacon)

& _checkNorPayabie(

2 bytes32 IMPLEVENTATION_SLOT

© pgradeBeaconToAndcall)
0

O wint256 NOT_ENTERED
O wint255 ENTERED
O unt256_status

© _constructor,

@ rerce

© QtotalSupply()
© Qalanceof()
© ransfer)

@ rerores

@ rensrmesaaoracr)

@ eanveorsvitaract)

IlchiBribeDistributorFactory
Intializable
UUPSLngradeable

© address implementation
© add esstub
© address voter

© infiaize()

© sethccessHub()
© setvoe

© createDistributor()
© setiplemertation()

© _authorizeUparade(y

© uursuparsceani

Intializable
IER G1822Proxiable

D address _self

© stiing UPGRADE_INTERFACE_VERSION

© QchiGauge()
© Qi)

°
°
°
°

0
© safeDecreaseAlowance()
)

$ forceApprove B TnorReentrantBefore()
u

© Qalowance()
© approve()
© transferFrom()

oQ

QclaimecBries()

B _calOptionalReturn()
B calOptionalReturnBool()

© createDistrbutor()
© Qnplementtion()

> _ULPSUpgradeable_nt0)
© ZUDPSUpgradeable_int_unchainecl)
© QproxiabieUUDQ)

@© miiacarle L

O bytes WTALLZABLE STORAGE

Y (@) iercrs22Poniable
I |
© QurosiablelUD)

°
©Q _getniializedersion()
© Qsintiaizing)

© Q_jalzableStoragesiot()
B Q_getitiaizableStorage()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

IchiVaultGaugeFactory Diagram

(®) satecast

© Qolint2480)
© QuoLin240()
© Qolint2320)
© Qolint2240)
© QoLin216()

@ woter

© Qolint208()
© QoLint200()

® iniaize()

© aBass(

© QRetiof)

© QxTFY()

© QcFactory)

@ QclGaugeFactory()
© Qnfphanager()

© Qgovernor()

@ QauncherPlugini)

© natityRewardAmourt)
© distribute()

@ QgaugeFactory()

© QfeeDistrioutorFactory()
© Qirter()

© Qsaive()

© whitelst))

°

@ IERC20

© QotalSupply()
© Qalance0f()
© transfer()
© Qallowance()
© approve()
© transferFrom()

© QisGauger)
© KiGauge()

© reviveGauge()

© poke()

@ sefhlainTickSpacing()
© QisFeeDistrioutar()
o amy)

@ QgaugeForPooll)
© QfeeD orGauge()

© QgetPeriod()
© vote()
© reset

@ setGovernor()
© stuckEmissionsRecovery()

© Qolintt52(0)
© QolinttB4()
© Qpolintt78()
© Qolintt63()
© Qgolint160()
© Qpolint1520)
© Qolintt 440
© Qolintt36()
© QpoUnt1280)
© Qolintt20()
© QpoUintt12()
© Qolintt 04
© Qtolinge()
© Qrolintea0)
© Qolint30()
© Qolint72()
© Qrointsd()
© Qpolints6()
© Qrolin4a()
© Qolint400)
© Qtolint32()
© Qrolint24()
© Qolint16()
© Qo)

© Qolint256()
© Qpoint2480)

© Qoint240()
© Qgoit2320)
© Qpont2240)
© Qoint216()
© Qoit2080)
© Qoint200()
© Qoint1320)
© Qoit1840)

@ Math

© Qadd5120)

© qmuis12()

© atryadaq

© QtrySubly

© arywu)

© aryoivg

© Qryhed()

© Qsaturatingadd()
© QsaturatingSubl)
© Qsaturatinghui(y
© Qernary()

© Qman()

© amingy

© Qaverage()

© QcelDiv))

© amuDi)

© amuishi()

© Qnviod()

© QinviodPrime()
© QmodExp()

© QryodExp()

B Q_zeroBytes()
© Qsart()

© Quog2p)

© Qog! 00

© Qogase()y

© QunsignedRoundsUp()

@) 1eacon

@) Amays

WvSiorageSiot for bytes32

WNSlotDerivation for bytes3?

< Qsont()

B Q_quicksort()

B Q begin()

= Qendy

= Qnload()

= Qswap()

B Q_castToUin256Amay()
B QcastTolint256Comp()
© QfindJpperBound()

© QowerBounciiemery()
© QupperBounchemory(y
© QunsateAccess()

© QunsatetemoryAceess()

© rehvauttoauge

ReentrancyGuard

W\EnumerableSet for EnumerableSet AddressSet

o
© EnumerableSet Address Set tokeridhitelists

© LNf28E=>mapping address=>Uin256 userShareSecondsByPeriod
© Lint256=2Lini255 giobalTotalShareSecondsByPeriod

© Lint288=-bool periodSecondsRecorded

© Lint28E=>mapping address=>Uint256 totelRewsr dByPeriod

© address==mappin;
© Lint256 DURATION

® __constructor_(

© recordshareSeconds()

® QeamedForVauttShares()
© claimRewardsForPeriod)
© setShareRecorder()

® notify/auttReward Amourt()
© wiislistReward|

© removeRewardVWhtelist()
@ depositExternalLlPReward()
© QrewardsLisi()

© QrewardsListLength()

© Qisihitelisted()

© QgetCurentPeriod)

© _safeTransfer()

© ZsafeTransferfrom()

F‘ |
for EnumerableSet AddressSet |
| |

© whielisiGaugeRewards() © Qont178() o)
@ removeGaugeRewardhitelist() © Qtolnt1 68() i 1
© createCLGauge() © Qolnt180()
© clamCiCaugeRewards() © Qointt 520 -
© claimincertives() © Qtolnt1 440) , |
© chinRewards() © Qolnt138() !
o distbuteForPeriod() < Qolt1280) ! .
© distributeAll © Qolnt1 200
© batchbistriouteByindex() © Qont1120) ! |
@ QgetVotes() © Qolnt1 040) ,
© QetalGauges() © Qolntge()
© QetalFecDistributors() © Qolntea) ! !
© sciGlobalRatio() © QolntB() / |
© QisWhitelistes © Qoint72() ! !
@ removeFeeDistributorReward() © Qoktea]) ! !
© QposttionOracle() © Qolntss() ! |
© Qoitas() ! |
© Qoltdo)) !
© Qtaint32() ; N
© Quont2a() ! !
© Qolnt160) ! !
© Qorta) !
© Qolnt25a0) ! |
© Qollintf) ! !
i '
iforbytes3? for bytes3?
I i
i |
.
' '
i '
i
@ Address @ n n /
- = = (@) stctpervation
st . sl
— © QiunctionStaticCal() © Qoffse
C— © funciionDelegateCall) SNt © QueriveArray()
& Querify get() > © Qderi
& iiféliﬁ?,‘““"" © QgetBytesShi)

@) ercrosnutis

© bytes3? IMPLEMENTATION_SLOT
© pytes32 ADMIN_SLOT
& bytes32 BEACON_SLOT

© Qgetimplementation()
B _setimplementation(}
o i

© Qimplementation()

@) rerc1967)
—

© char

© upg
B _che

© Qgetadmin()
B _setAdmin()

© QgetBeacon()
® _setBeacon()

ngeAdin()

radeBeaconToAndCall)
eckNorPayable()

@\Lm\/amtoaugsFaunw

HiehiVouRtGaugeFactory
inftializable
UUPSUpgradeable

© address voter
© address accessHub
© address lastGaugs

© intialize()

© setvater()

® setAccessHub()

© createl/autCauge()
© _authorizeUpgrade()

© UUPSUpgradeable

©

V]
|
®Enumsrableset |
o |
5 _add)
B remove) ©
B ciear() (@) nenwauisaugeractr,
& _cortains() O yint255 NOT_ENTERED 5 g
= Qlengh() O w256 ENTERED
B Qs 0 uint?58 _status © createVautGauge()
B Q_values() @ Quoter()
__constructor_()
© addy QL= © QaccessHs)
© remove() e © QlasiGauge()
Stz © Q_yeentrancyGuardEntered()
© Qlength()
© Qat()
© Qualues()

Iitistizable
IERG1822Proxiable

O address _self
© string UPGRADE_INTERFACE_VERSION

© _ULPSUpgradeable_int()
__UUPSUpgradeable_jnit_unehained()
© QoroxiableUUID()

© upgradeToAndCal)

© Q_checkProxy()

© Q_checkHotDelsgated()

© _authorizeUpgrade()

B _pgradeToAndCallUPS()

(©) nitaizable

O bytes32 INTIALIZABLE_STORAGE

@) rercr1822Pronianre

oa i
< _disablelnitializers()
oR

© Qjintiaizing()
© Q intilzabkeStoragesiet()
W Q_getinitializableStorage()

© QproxiableUUID()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and prototype custom analyses
quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We analyzed the project together. Below are the results.

Slither Log >> 033.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Slither:033.sol analyzed (18 contracts with 93 detectors), 53 result(s) found

Slither Log >> xTFY.sol

INFO:Slither:xTFY.sol analyzed (15 contracts with 93 detectors), 100 result(s) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Log >> VoterV4.sol

INFO:Slither:VoterV4.sol analyzed (37 contracts with 93 detectors), 230 result(s) found

Slither Log >> AccessHub.sol

a private and confidential document. No part of this document should
isclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Slither:AccessHub.sol analyzed (26 contracts with 93 detectors), 103 result(s) found

Slither Log >> FeeCollector.sol

INFO:Slither:FeeCollector.sol analyzed (10 contracts with 93 detectors), 15 result(s) found

Slither Log >> IchiBribeDistributor.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Slither:lchiBribeDistributor.sol analyzed (10 contracts with 93 detectors), 27 result(s) found

Slither Log >> IchiVaultGauge.sol

INFO:Slither:IchiVaultGauge.sol analyzed (10 contracts with 93 detectors), 78 result(s) found

Slither Log >> Minter.sol

INFO:Slither:Minter.sol analyzed (9 contracts with 93 detectors), 39 result(s) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Log >> PositionOracle.sol

INFO:Slither:PositionOracle.sol analyzed (5 contracts with 93 detectors), 6 result(s) found

Slither Log >> RevenueToRebaseManager.sol

INFO:Slither:RevenueToRebaseManager.sol analyzed (18 contracts with 93 detectors), 59
result(s) found

a private and confidential document. No part of this document should
isclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Log >> Thirdfy.sol

INFO:Slither:Thirdfy.sol analyzed (17 contracts with 93 detectors), 23 result(s) found

Slither Log >> ThirdfyTimelock.sol

INFO:Slither:Thirdfy Timelock.sol analyzed (12 contracts with 93 detectors), 17 result(s) found

Slither Log >> VoteModule.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Slither:VoteModule.sol analyzed (9 contracts with 93 detectors), 75 result(s) found

Slither Log >> ClGaugeFactory.sol

INFO:Slither:ClGaugeFactory.sol analyzed (2 contracts with 93 detectors), 8 result(s) found

Slither Log >> IchiBribeDistributorFactory.sol

INFO:Slither:IchiBribeDistributorFactory.sol analyzed (20 contracts with 93 detectors), 61
result(s) found

Slither Log >> IchiVaultGau

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Slither:IchiVaultGaugeFactory.sol analyzed (20 contracts with 93 detectors), 103 result(s)
ound

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Pos: 259:22:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's

Gas requirement of function o33.rescue is infinite: If the gas requirement of a function is higher
han the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
hat modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 231:4:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
hose yield rational constants.

Pos: 339:17:

xTFY.sol

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Pos: 299:17:

Gas costs:

Gas requirement of function xTFY.setExemptionTo is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 359:4:

For loop over dynamic array:
is a private and confidential document. No part of this document should

sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 326:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 366:8:

Similar variable names:

X TFY.createVest(uint256) : Variables have very similar names "MIN_VEST" and "MAX_VEST".
Note: Modifiers are currently not considered by this static analysis.

Pos: 260:34:

VoterV4.sol

ransaction origin:
Use of tx.origin: "tx.origin" is useful only in very exceptional cases. If you use it for authentication,

you usually want to replace it by "msg.sender", because otherwise any contract you call can act
on your behalf.
Pos: 506:26:

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Pos: 649:16:

Gas costs:

Gas requirement of function RewardClaimers.claimRewards is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 770:4:

Delete dynamic array:
he "delete" operation when applied to a dynamically sized array in Solidity generates code to

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

delete each of the elements contained. If the array is large, this operation can surpass the block
gas limit and raise an OOG exception. Also nested dynamically sized objects can produce the

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 183:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 333:8:

Delete from dynamic array:
Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.

Pos: 245:16:

AccessHub.sol

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's

Gas requirement of function AccessHub.setNewGovernorlinVoter is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 174:4:

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 184:8:

FeeCollector.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
FeeCollector.safeTransferWithLogging(contract IERC20,address,uint256,string,string): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.Note: Import aliases are currently not supported by this static analysis.

Pos: 100:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

IchiBribeDistributor.sol

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Gas requirement of function IchiBribeDistributor.claimBribes is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of storage (this includes clearing or copying arrays in

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

maximum you can pass to such functions to make it successful.
Pos: 94.:8:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

IchiVaultGauge.sol

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's

Gas requirement of function IchiVaultGauge.isWhitelisted is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 120:8:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

Minter.sol

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 174:17:

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's

Gas requirement of function Minter.startEmissions is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 117:4:

PositionOracle.sol

Gas costs:

Gas requirement of function PositionOracle.batchSubmitPositionData is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 106:4:

Constant/View/Pure functions:
PositionOracle.setFallbackMode(bool) : Potentially should be constant/view/pure but is not. Note:
Modifiers are currently not considered by this static analysis.

(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

RevenueToRebaseManager.sol

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Pos: 332:55:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function RevenueToRebaseManager.executeWeeklyRevenue is infinite: If the
gas requirement of a function is higher than the block gas limit, it cannot be executed. Please
avoid loops in your functions or actions that modify large areas of storage (this includes clearing
or copying arrays in storage)

Pos: 292:4:

Similar variable names:

RevenueToRebaseManager.createDistributionProposal(uint256,uint256) : Variables have very
similar names "proposals" and "proposalld". Note: Modifiers are currently not considered by this
static analysis.

Pos: 464:52:

Guard conditions:
"assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 622:12:

Thirdfy.sol

Gas costs:

Gas requirement of function Thirdfy.mint is infinite: If the gas requirement of a function is higher
han the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
hat modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 24:4:

VoteModule.sol

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Pos: 244:20:

Gas costs:
Gas requirement of function VoteModulewithdrawAll is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

functions or actions that modify large areas of storage (this includes clearing or copying arrays in

Similar variable names:

\VoteModule.delegate(address) : Variables have very similar names "delegates" and "delegatee".
Note: Modifiers are currently not considered by this static analysis.

Pos: 415:34:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift items manually and update the "length" property.
Pos: 407:12:

ClGaugeFactory.sol

No return:
IClGaugeFactory.createGauge(address): Defines a return type but never explicitly returns a value.
Pos: 6:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

IchiBribeDistributorFactory.sol

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Pos: 193:15:

Gas costs:

Gas requirement of function IchiBribeDistributorFactory.initialize is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

Email: audit@EtherAuthority.io

explicitly returns a value.
Pos: 19:4:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

IchiVaultGaugeFactory.sol

Low level calls:
Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

Pos: 183:8:

Similar variable names:
IchiVaultGauge.(address[2],address,address) : Variables have very similar names "ichiVault1" and
"_ichiVaults". Note: Modifiers are currently not considered by this static analysis.

(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

033.sol

Compiler version "0.8.26 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

Contract name must be in CamelCase

Pos: 1:16

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:65

Avoid to use low level calls.

Pos: 51:312

Avoid making time-based decisions in your business logic
Pos: 17:360

xTFY.sol

Compiler version "0.8.26 does not satisfy the "0.5.8 semver
requirement

Pos: 1:1

Contract name must be in CamelCase

Pos: 1:13

[Variable name must be in mixedCase

Pos: 5:32

Explicitly mark visibility of state

Pos: 5:37

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:61

Avoid making time-based decisions in your business logic

Pos: 18:298

Possible reentrancy vulnerabilities. Avoid state changes after
transfer.

Pos: 13:302

VoterV4.sol

Compiler version "0.8.26 does not satisfy the "0.5.8 semver
requirement

Pos: 1:14

Use double quotes for string literals

Pos: 32:40

Contract has 41 states declarations but allowed no more than 15
Pos: 1:45

Code contains empty blocks

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Pos: 53:988

Variable "poolAddress" is unused
Pos: 9:954

Variable "period" is unused

Pos: 9:955

Avoid to use low level calls.
Pos: 23:1026

AccessHub.sol

Compiler version "0.8.26 does not satisfy the ~0.5.8 semver
requirement

Pos: 1:1

Code contains empty blocks

Pos: 88:90

Avoid to use low level calls.

Pos: 28:148

FeeCollector.sol

Compiler version "0.8.26 does not satisfy the "0.5.8 semver
requirement
Pos: 1:1
Use double quotes for string literals
Pos: 71:25
Explicitly mark visibility in function (Set ignoreConstructors to
if using solidity >=0.7.0)
5:55
contains empty blocks
17:66

IchiBribeDistributor.sol

Compiler version "0.8.26 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:52

Error message for require is too long

Pos: 9:53

Avoid making time-based decisions in your business logic

Pos: 16:192

IchiVaultGauge.sol

|

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Compiler version "0.8.26 does not satisfy the "0.5.8 semver
requirement

Pos: 1:1

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:76

Avoid making time-based decisions in your business logic
Pos: 16:305

Avoid to use low level calls.

Pos: 45:313

Avoid to use low level calls.

Pos: 45:322

Minter.sol

Compiler version "0.8.26 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:46

Avoid to use low level calls.

Pos: 36:104

Avoid making time-based decisions in your business logic

Pos: 18:173

PositionOracle.sol

Compiler version "0.8.26 does not satisfy the "0.5.8 semver
requirement

Pos: 1:1

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:44

Error message for require 1is too long

Pos: 9:79

Code contains empty blocks

Pos: 29:109

RevenueToRebaseManager.sol

Compiler version "0.8.26 does not satisfy the 70.5.8 semver
requirement

Pos: 1:1

Contract has 21 states declarations but allowed no more than 15
Pos: 1:39

Avoid making time-based decisions in your business logic

Pos: 44:781

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Error message for require is too long
Pos: 9:801

Thirdfy.sol

Compiler version "0.8.26 does not satisfy the

requirement

Pos: 1:1

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:14

ThirdfyTimelock.sol

Compiler version
requirement
Pos: 1:1
Explicitly mark visibility in function (Set ignoreConstructors to
if using solidity >=0.7.0)
5:6
contains empty blocks
65:11

VoteModule.sol

.8.26 does not satisfy the 70.5.8 semver
requirement
Pos: 1:1
Contract has 27 states declarations but allowed no more than 15
Pos: 1:39
Avoid making time-based decisions in your business logic
Pos: 34:13
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:148
Provide an error message for require
Pos: 9:391
Avoid making time-based decisions in your business logic
Pos: 51:651

ClGaugeFactory.sol

Compiler version "0.8.26 does not satisfy the 70.5.8 semver

requirement
Pos: 1:1

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

global import of path ICLGaugeInterfaces.sol is not allowed. Specify
names to import individually or bind all exports of the module into a
(import "path" as Name)
1:

name

sage for revert is too long

IchiBribeDistributorFactory.sol

Compiler version "0.8.26 does not satisfy the
requirement
1:1

contains empty blocks

Compiler version

requirement

Pos: 1:1

Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)

Pos: 5:76

Avoid making time-based decisions in your business logic

Pos: 16:305

Software analysis result:
This software reported many false positive results, and some are informational issues. So,

those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

	●​Reward Distribution Based on Share-Seconds
	●​Core Role:
	 Security & Safety
	Governance Integration
	Accurate Accounting
	Purpose:

	Core State Variables

