

​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​

Project: OZONE
Website: ozonex.tech
Platform: BNB Smart Chain (BSC)
Language: Solidity

​ ​ ​ ​ ​ Date:​ November 6th, 2025

https://ozonex.tech

Table of contents

Introduction ………………………………………………………………………………………​4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..9

Technical Quick Stats …..……………………………………………………………………… ​10

Code Quality ……………………………………………………………………………………. ​11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies ……………………………………………………………………………​11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………...​ 14

Audit Findings …………………………………………………………………………………… ​15

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ……………………………………………………………………………………….​22

Appendix

●​ Code Flow Diagram ……………………………………………………………………... 23

●​ Slither Results Log ………………………………………………………………………. 24

●​ Solidity static analysis ….……………………………………………………………….. 26

●​ Solhint Linter …………………………………………………………………….………...28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT AND MAY

CONTAIN INFORMATION THAT IS CONFIDENTIAL. THIS INCLUDES

ANY POTENTIAL VULNERABILITIES AND MALICIOUS CODES THAT

CAN BE USED TO EXPLOIT THE SOFTWARE. THIS MUST BE

REFERRED INTERNALLY AND ONLY SHOULD BE MADE AVAILABLE

TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction

EtherAuthority was contacted by the OZONE team to perform a security audit of the
OZONE smart contract’s code. The audit was conducted using manual analysis and
automated software tools. This report presents all the findings regarding the audit
performed on November 6th, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

OzoneXStaking is an advanced DeFi staking contract that allows users to stake OZONE
tokens and earn rewards in two different forms — USDT or OZONE — depending on

their preference and the pool’s configuration.

It supports multiple staking pools, each with its own rules for APY, minimum/maximum

stake limits, reward intervals, and automatic burn features.

Key Features:

1.​ Dual Reward Options
○​ Users can earn rewards in USDT or OZONE.

○​ Each pool can allow or restrict OZONE rewards.

2.​ Multi-Pool System
○​ Admins can create multiple pools with different parameters (APY, claim

interval, etc.).

○​ Each pool is independent and customizable.

3.​ Automatic Token Burn
○​ When a user’s rewards reach the maximum cap (e.g., 300% of the staked

amount), their tokens can be auto-burned for supply control and

sustainability.

4.​ Flexible Claiming
○​ Users can claim rewards after a set interval (default: 15 days).

○​ They can select the reward type when claiming.

5.​ Manual Unstake
○​ Users can unstake at any time before reaching the maximum reward limit

and withdraw their staked tokens.

6.​ Reserve-Based Rewards
○​ Rewards are paid from USDT and OZONE reserves, which are funded by

the contract owner.

○​ Prevents reward generation without actual liquidity backing.

7.​ Admin Control
○​ Create, update, or deactivate pools.

○​ Fund or withdraw reward reserves.

○​ Update the OZONE price for conversion.

○​ Pause/unpause the entire system in emergencies.

8.​ Proof of Reserves
○​ Integrates with the OZONE token contract to display on-chain reserve data

for transparency.

.Audit scope

Name Code Review and Security Analysis Report for
OZONE Smart Contract

Website ozonex.tech

Staking Apps ozonehub.io

Platform BNB Smart Chain (BSC)

Language Solidity

File OzoneXStaking.sol

Initial Code Link 0x9316865b229045dca5ab5058059ca84a9fe23aa9

Audit Date November 6th, 2025

Revised Audit Date November 7th, 2025

https://ozonex.tech
https://ozonehub.io
https://bscscan.com/address/0x9316865b229045dca5ab5058059ca84a9fe23aa9#code

Claimed Smart Contract Features

Claimed Feature Details Our Observation

File: OzoneXStaking.sol
Token Distribution:
Tokenomics:

●​ Total Supply: 1 billion $OZONE tokens

Token Utility Framework:

Core Staking Features:

●​ Multi-pool staking system (each pool has unique

APY, limits, and intervals).

●​ Supports staking of OZONE tokens.

●​ Automatic calculation of daily rewards based on

pool APY.

●​ Configurable claim interval (default: 15 days).

●​ Maximum reward cap (default: 300% of staked

amount).

Dual Reward System:

●​ Users can choose to receive rewards in:

○​ USDT (stable reward)

○​ OZONE (native token)

●​ Each pool can enable/disable OZONE rewards

individually.

●​ Dynamic conversion based on real-time ozone

price.

Reward Claim & Management:

●​ Claim rewards anytime after the claim interval.

●​ Supports manual or auto-claim during unstake.

●​ Tracks:

○​ Total rewards claimed.

YES, this is valid. The
smart contract owner
controls these functions,
so the owner must handle
the private key of the
owner's wallet very
securely.
Because if the private key
is compromised, then it will
create problems.

○​ Rewards claimed in USDT and OZONE

separately.

●​ Automatically checks the reserve balance before

paying rewards.

Auto Burn Mechanism:

●​ If total rewards reach the maximum cap (e.g.,

300%),​

 → Staked tokens are automatically burned to a

dead address.

●​ Reduces supply and maintains token value.

●​ Emits a detailed burn event for transparency.

Pool Management (Admin):

●​ Create, update, or deactivate staking pools.

●​ Set custom:

○​ APY, claim interval, min/max stake

○​ Max reward %, auto-burn flag, and reward

type allowance

●​ Fully modular — multiple active pools supported.

Reserves & Funding:

●​ Separate reserves for USDT and OZONE

rewards.

●​ The owner can:
○​ Fund or withdraw reserves.

○​ Track total distributed rewards and reserve

balances.

●​ Ensures proof-of-reserve-backed payouts.

Price & Conversion Control:

●​ The owner can manually set the OZONE price (1

USDT = N OZONE).

●​ Used for OZONE reward calculation.

●​ Designed for future integration with on-chain

oracles.

Security & Safety:

●​ ReentrancyGuard — prevents double claim

attacks.

●​ Ownable — admin-only functions protected.

●​ Pausable — emergency pause for all operations.

●​ Emergency Withdraw — owner can recover

tokens when paused.

Transparency & Tracking:

●​ Complete pool & user stake history accessible

via view functions.

●​ On-chain events for all actions:

○​ Pool creation/update

○​ Stake, claim, unstake, burn

○​ Reserve funding & withdrawal

●​ Integrates with the OZONE Proof-of-Reserves

contract.

Audit Summary

According to the standard audit assessment, the Customer`s solidity-based smart contract
is “Secured”. Also, these contracts contain owner control, which does not make them
fully decentralized. ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

You are here​
​

We utilized various tools, including Slither, Solhint, and Remix IDE. This finding is also
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed, and applicable
vulnerabilities are presented in the Audit overview section. A general overview is
presented in the "AS-IS" section, and all identified issues are listed in the "Audit Overview"
section.

We found 0 critical, 1 high, 1 medium, 0 low, and 2 very low-level issues.
We confirm that all issues are acknowledged.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack a check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks an event log Passed

Human/contract checks bypass Passed
Random number generation/use vulnerability N/A

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Features claimed Moderated

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality

This audit scope has 1 smart contract file. A smart contract contains Libraries, Smart

contracts, inheritance, and Interfaces. This is a compact and well-written smart contract.

The libraries in OZONE are part of its logical algorithm. A library is a different type of smart

contract that contains reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address, and its properties/methods can be reused many times by

another contract in OZONE.

The OZONE team has not provided scenarios and unit test scripts, which would have

helped to determine the integrity of the code automatically.

The code sections are well-commented in the smart contract. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an OZONE smart contract code in the form of a bscscan.com link. The

smart contract link is mentioned in the table above.

As mentioned above, the code parts are well commented, and the logic is

straightforward. Thus, it is easy to understand the programming flow and complex code

logic quickly. Comments are constructive in understanding the overall architecture of the

protocol.

Another source of information was its official Website: https://ozonex.tech and

Whitepaper: https://drive.google.com/file/d/1BnhideVxbn2RjL52P_fHJNFlMvbhC7TX/view,

which provided rich information about the project architecture.

Use of Dependencies
According to our observation, the libraries utilized in this smart contract infrastructure are

based on well-known industry-standard, open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://bscscan.com/address/0x9316865b229045dca5ab5058059ca84a9fe23aa9#code
https://ozonex.tech
https://drive.google.com/file/d/1BnhideVxbn2RjL52P_fHJNFlMvbhC7TX/view

AS-IS overview

OzoneXStaking.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 createPool external access only Owner No Issue
3 updatePool external access only Owner No Issue
4 deactivatePool external access only Owner No Issue
5 stake external Passed No Issue
6 calculateAvailableRewards read Passed No Issue
7 calculateRewardDistribution read Passed No Issue
8 canClaim read Passed No Issue
9 claimRewards external Passed No Issue

10 claimRewardsWithType external Passed No Issue
11 _claimRewards internal Passed No Issue
12 _autoBurnTokens write Passed No Issue
13 unstake external Lock period not

enforced properly
Acknowledged

14 fundUSDTReserves external access only Owner No Issue
15 fundOzoneReserves external access only Owner No Issue
16 withdrawUSDTReserves external access only Owner No Issue
17 withdrawOzoneReserves external access only Owner No Issue
18 setOzonePrice external access only Owner No Issue
19 getPool external Passed No Issue
20 getUserStake external Passed No Issue
21 getUserStakeCount external Passed No Issue
22 getRewardBreakdown external Passed No Issue
23 getStakingStats external Passed No Issue
24 getOZONEProofOfReserves external Variable Shadowing

Warning
Acknowledged

25 getVersion external Passed No Issue
26 getTotalActiveStakes external Passed No Issue
27 pause external access only Owner No Issue
28 unpause external access only Owner No Issue
29 emergencyWithdrawUSDT external Emergency

withdrawals don't
update reserves

Acknowledged

30 emergencyWithdrawOZONE external Emergency
withdrawals don't
update reserves

Acknowledged

31 nonReentrant modifier Passed No Issue
32 _nonReentrantBefore write Passed No Issue
33 _nonReentrantAfter write Passed No Issue
34 _reentrancyGuardEntered internal Passed No Issue
35 onlyOwner modifier Passed No Issue

36 owner read Passed No Issue
37 _checkOwner internal Passed No Issue
38 renounceOwnership write access only Owner No Issue
39 transferOwnership write access only Owner No Issue
40 _transferOwnership internal Passed No Issue
41 whenNotPaused modifier Passed No Issue
42 whenPaused modifier Passed No Issue
43 paused read Passed No Issue
44 _requireNotPaused internal Passed No Issue
45 _requirePaused internal Passed No Issue
46 _pause internal Passed No Issue
47 _unpause internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss, etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g., public access to crucial.

Medium Medium-level vulnerabilities are important to fix; however,
they can’t lead to tokens.

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc., code snippets that can’t have a significant
impact on execution.

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical-severity vulnerabilities were found

High Severity

(1) Lock period not enforced properly:

The Staking system design implies locked staking, but users can withdraw anytime.

This breaks the expected staking commitment.

Resolution: Implement a lock period per pool and block withdrawals prior to maturity.

Allow exit only after the lock ends or apply a penalty burn/fee.

Status: Acknowledged

Comments: Client will make sure that the unstake will not be executed from the UI.

Medium

(1) Emergency withdrawals don't update reserves:

The emergencyWithdrawUSDT() and emergencyWithdrawOZONE() functions transfer

tokens directly to the contract owner but do not update the corresponding internal reserve

variables (stakingUSDTReserves and ozoneReserves).

This creates a mismatch between the actual token balances and the contract’s internal

accounting.

For example:
If the contract holds 500 OZONE tokens and ozoneReserves records 200, and the owner

performs an emergency withdrawal of 400 OZONE, the contract will now hold only 100

tokens — but ozoneReserves will still incorrectly indicate 200.

As a result, subsequent reward claims or calculations that rely on reserve balances may

revert or produce incorrect values because the reserves no longer match actual liquidity.

Resolution: Subtract the withdrawn amount from the corresponding reserve variable

(stakingUSDTReserves or ozoneReserves) whenever an emergency withdrawal is

executed.

Add validation to ensure that the owner cannot withdraw more than the recorded reserve

balance.

Optionally, include a syncReserves() function that allows the contract to realign its internal

reserve variables with on-chain token balances after any manual intervention.

Status: Acknowledged

Comments: The owner will take care of this.

Low

No low-severity vulnerabilities were found

Very Low / Informational / Best practices:

(1) Unused variables:

There is a MAX_REWARD_PERCENTAGE variable defined, but not used anywhere.

Resolution: Remove unused variables from the code.

Status: Acknowledged

(2) Variable Shadowing Warning:

Warning: This declaration shadows an existing declaration.

A function parameter or local variable uses the same name as a state variable. This can

cause unexpected behavior or confusion in the contract.

Resolution: Rename either the state variable or the function return variable to avoid the

name conflict.

For example, use ozoneReservesLocal inside the function instead of ozoneReserves.

Status: Acknowledged

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet private key were compromised, then it would create trouble. The following

are Admin functions:

OzoneXStaking.sol
●​ createPool: Allows the owner to create a new staking pool with configurable APY,

limits, intervals, and dual reward options.

●​ updatePool: Updates parameters of an existing pool (APY, limits, burn rules,

reward type) by the owner.

●​ deactivatePool: Deactivates a pool, preventing new stakes while keeping existing

stakes intact by the owner.

●​ fundUSDTReserves: Allows the owner to add USDT to the contract for future

staking rewards.

●​ fundOzoneReserves: Allows the owner to add OZONE to the reward reserve

pool.

●​ withdrawUSDTReserves: Allows the owner to withdraw available USDT reserves

from the contract.

●​ withdrawOzoneReserves: Allows the owner to withdraw available OZONE

reserves from the contract.

●​ setOzonePrice: Updates the OZONE token’s price used for USDT↔OZONE

reward conversions by the owner.

●​ pause: Pauses all staking, claiming, and unstaking operations by the owner.

●​ unpause: Resumes contract operations after being paused by the owner.

●​ emergencyWithdrawUSDT: Allows the owner to withdraw USDT during an

emergency when paused.

●​ emergencyWithdrawOZONE: Allows the owner to withdraw OZONE during an

emergency when paused.

Conclusion

We were given a contract code in the form of a bscscan.com weblink. We have used all

possible tests based on the objects in the given file. During our analysis, we identified 1

high, 1 medium, and 2 informational severity issues in the smart contract. All identified

problems have been acknowledged. Therefore, we confirm that the smart contract has
been successfully reviewed and deployed on the mainnet.

Since possible test cases can be unlimited for such a smart contract protocol, we provide

no such guarantee of future outcomes. We have utilized the latest static analysis tools and

manual observations to cover as many test cases as possible, ensuring comprehensive

scanning of all relevant areas.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on the standard audit procedure

scope, is “Secured”.​ ​

https://bscscan.com/address/0x9316865b229045dca5ab5058059ca84a9fe23aa9#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In reviewing all of the code, we look for any potential issues with code logic, error handling,

protocol and header parsing, cryptographic errors, and random number generators. We

also watch for areas where more defensive programming could reduce the risk of future

mistakes and speed up future audits. Although our primary focus is on the in-scope code,

we examine dependency code and behavior when it is relevant to a particular line of

investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of the functionality of the software under review. We then meet with the developers to gain

an appreciation of their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm threat models

and attack surfaces. We read design documentation, review other audit results, search for

similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early, even if they are later shown not

to represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation are an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers

EtherAuthority.io Disclaimer

The EtherAuthority team has analyzed this smart contract by the best industry practices as
of the date of this report, about cybersecurity vulnerabilities and issues in smart contract
source code, the details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended functions).

Because the total number of test cases is unlimited, the audit makes no statements or
warranties on the security of the code. It also cannot be considered a sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other
statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report alone. We
also suggest conducting a bug bounty program to confirm this smart contract's high
security level.

Technical Disclaimer

A smart contract is deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have
vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit security
of the audited smart contract.

Appendix

Code Flow Diagram - OZONE

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and quickly prototype custom

analyses. The study includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We analyzed the project together. Below are the results.

Slither Log >> OzoneXStaking.sol

INFO:Detectors:
OzoneXStaking.calculateAvailableRewards(address,uint256) (OzoneXStaking.sol#722-756) performs a
multiplication on the result of a division:
 - daysElapsed = timeElapsed / 86400 (OzoneXStaking.sol#733)
 - dailyReward = (userStake.originalAmount * pool.monthlyAPY) / 10000 / 30 (OzoneXStaking.sol#738)
 - totalReward = dailyReward * daysElapsed (OzoneXStaking.sol#739)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
INFO:Detectors:
OzoneXStaking.calculateAvailableRewards(address,uint256) (OzoneXStaking.sol#722-756) uses a
dangerous strict equality:
 - daysElapsed == 0 (OzoneXStaking.sol#735)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
INFO:Detectors:
Reentrancy in OzoneXStaking._claimRewards(uint256,OzoneXStaking.RewardType)
(OzoneXStaking.sol#810-862):
 External calls:
 - require(bool,string)(usdtToken.transfer(msg.sender,usdtAmount),USDT transfer failed)
(OzoneXStaking.sol#844)
 State variables written after the call(s):
 - ozoneReserves -= ozoneAmount (OzoneXStaking.sol#848)
 OzoneXStaking.ozoneReserves (OzoneXStaking.sol#514) can be used in cross-function reentrancies:
 - OzoneXStaking.fundOzoneReserves(uint256) (OzoneXStaking.sol#941-945)
 - OzoneXStaking.getStakingStats() (OzoneXStaking.sol#1031-1054)
 - OzoneXStaking.ozoneReserves (OzoneXStaking.sol#514)
 - OzoneXStaking.withdrawOzoneReserves(uint256) (OzoneXStaking.sol#960-965)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
OzoneXStaking.getOZONEProofOfReserves() (OzoneXStaking.sol#1059-1061) ignores the return value by
ozoneContract.getProofOfReserves() (OzoneXStaking.sol#1060)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
Reentrancy in OzoneXStaking.fundUSDTReserves(uint256) (OzoneXStaking.sol#932-936):
 External calls:
 - require(bool,string)(usdtToken.transferFrom(msg.sender,address(this),_amount),USDT transfer failed)
(OzoneXStaking.sol#933)

 State variables written after the call(s):
 - stakingUSDTReserves += _amount (OzoneXStaking.sol#934)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
OzoneXStaking.getUserStake(address,uint256) (OzoneXStaking.sol#991-994) uses timestamp for
comparisons
 Dangerous comparisons:
 - require(bool,string)(_stakeIndex < userStakes[_user].length,Invalid stake index)
(OzoneXStaking.sol#992)
OzoneXStaking.getRewardBreakdown(address,uint256,OzoneXStaking.RewardType)
(OzoneXStaking.sol#1006-1026) uses timestamp for comparisons
 Dangerous comparisons:
 - require(bool,string)(_stakeIndex < userStakes[_user].length,Invalid stake index)
(OzoneXStaking.sol#1014)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
2 different versions of Solidity are used:
 - Version constraint ^0.8.20 is used by:
 -^0.8.20 (OzoneXStaking.sol#14)
 -^0.8.20 (OzoneXStaking.sol#46)
 -^0.8.20 (OzoneXStaking.sol#148)
 -^0.8.20 (OzoneXStaking.sol#345)
 -^0.8.20 (OzoneXStaking.sol#434)
 - Version constraint >=0.4.16 is used by:
 ->=0.4.16 (OzoneXStaking.sol#262)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
INFO:Detectors:
ReentrancyGuard._reentrancyGuardEntered() (OzoneXStaking.sol#425-427) is never used and should be
removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter OzoneXStaking.emergencyWithdrawUSDT(uint256)._amount (OzoneXStaking.sol#1098) is not
in mixedCase
Parameter OzoneXStaking.emergencyWithdrawOZONE(uint256)._amount (OzoneXStaking.sol#1105) is not
in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Slither:OzoneXStaking.sol analyzed (7 contracts with 93 detectors), 76 result(s) found

Solidity Static Analysis

OzoneXStaking.sol

Check-effects-interaction:
Potential violation of the Checks-Effects-Interaction pattern in
OzoneXStaking.withdrawOzoneReserves(uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
Pos: 960:4:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 838:34:

Gas costs:
Gas requirement of function OzoneXStaking.deactivatePool is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 663:4:

Gas costs:
Gas requirement of function OzoneXStaking.stake is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 676:4:

Gas costs:
Gas requirement of function OzoneXStaking.fundOzoneReserves is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 941:4:

Gas costs:
Gas requirement of function OzoneXStaking.emergencyWithdrawOZONE is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)
Pos: 1105:4:

Similar variable names:
OzoneXStaking.createPool(string,uint256,uint256,uint256,uint256,uint256,bool,bool) : Variables

have very similar names "pools" and "poolId". Note: Modifiers are currently not considered by this
static analysis.
Pos: 625:25:

Guard conditions:
Use "assert(x)" if you never want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g., invalid input or a failing external component.
Pos: 686:8:

Data truncated:
Division of integer values yields an integer value again. That means e.g., 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for the division of (only) literal values
since those yield rational constants.
Pos: 772:26:

Solhint Linter

OzoneXStaking.sol

Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:13
Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:147
Compiler version >=0.4.16 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:261
Compiler version ^0.8.20 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:433
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:567
Avoid making time-based decisions in your business logic
Pos: 16:788
The error message for require is too long
Pos: 13:818
Avoid making time-based decisions in your business logic
Pos: 35:832
Avoid making time-based decisions in your business logic
Pos: 35:837
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:847
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 13:848
Possible reentrancy vulnerabilities. Avoid state changes after
transfer.
Pos: 9:853

Software analysis result:
This software reported many false positive results, and some are informational issues. So,

those issues can be safely ignored.

	Key Features:
	Core Staking Features:
	Dual Reward System:
	Reward Claim & Management:
	Auto Burn Mechanism:
	Pool Management (Admin):
	Reserves & Funding:
	Price & Conversion Control:
	Security & Safety:
	Transparency & Tracking:

