@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: OZONE

Website: ozonex.tech

Platform: BNB Smart Chain (BSC)
Language: Solidity

Date: November 6th, 2025

https://ozonex.tech

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 9
Technical QUICK Stats ..o e 10
Code QUANIRY ... e 1
DOoCUMENTAtION ... 11
USE Of DEPENUENCIES ... e e nenaenes 11
ASIS OVEIVIEW ... 12
Severity DefinitioNS ... 14
AUt FINAINGS oo e 15
@70 o T3 1017 T o 19
(@ 0] 1Y/ =1 1 T To [o] 0T) 20
DISCIAIMEIS ... e 22
Appendix
o Code FIoW Diagramououoiiii s 23
o Shther RESUIS LOGuiiiiii e 24
e Solidity staticanalysis ... 26
® SOININt LiNter .o s 28

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT AND MAY
CONTAIN INFORMATION THAT IS CONFIDENTIAL. THIS INCLUDES
ANY POTENTIAL VULNERABILITIES AND MALICIOUS CODES THAT
CAN BE USED TO EXPLOIT THE SOFTWARE. THIS MUST BE
REFERRED INTERNALLY AND ONLY SHOULD BE MADE AVAILABLE
TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contacted by the OZONE team to perform a security audit of the
OZONE smart contract's code. The audit was conducted using manual analysis and
automated software tools. This report presents all the findings regarding the audit
performed on November 6th, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

OzoneXStaking is an advanced DeFi staking contract that allows users to stake OZONE
tokens and earn rewards in two different forms — USDT or OZONE — depending on

their preference and the pool’s configuration.

It supports multiple staking pools, each with its own rules for APY, minimum/maximum

stake limits, reward intervals, and automatic burn features.

Key Features:

1. Dual Reward Options
o Users can earn rewards in USDT or OZONE.
o Each pool can allow or restrict OZONE rewards.
2. Multi-Pool System
o Admins can create multiple pools with different parameters (APY, claim
interval, etc.).
o Each pool is independent and customizable.
3. Automatic Token Burn
o When a user’s rewards reach the maximum cap (e.g., 300% of the staked
amount), their tokens can be auto-burned for supply control and
sustainability.
4. Flexible Claiming
o Users can claim rewards after a set interval (default: 15 days).

o They can select the reward type when claiming.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

5. Manual Unstake
o Users can unstake at any time before reaching the maximum reward limit
and withdraw their staked tokens.
6. Reserve-Based Rewards
o Rewards are paid from USDT and OZONE reserves, which are funded by
the contract owner.
o Prevents reward generation without actual liquidity backing.
7. Admin Control
o Create, update, or deactivate pools.
o Fund or withdraw reward reserves.
o Update the OZONE price for conversion.
o Pause/unpause the entire system in emergencies.
8. Proof of Reserves
o Integrates with the OZONE token contract to display on-chain reserve data

for transparency.

Audit scope

Name Code Review and Security Analysis Report for
OZONE Smart Contract

Website ozonex.tech

Staking Apps ozonehub.io

Platform BNB Smart Chain (BSC)

Language Solidity

File OzoneXStaking.sol

Initial Code Link 0x9316865b229045dca5ab5058059ca84a9fe23aa9

Audit Date November 6th, 2025

Revised Audit Date November 7th, 2025

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://ozonex.tech
https://ozonehub.io
https://bscscan.com/address/0x9316865b229045dca5ab5058059ca84a9fe23aa9#code

Claimed Smart Contract Features

Claimed Feature Details

Our Observation

File: OzoneXStaking.sol
Token Distribution:

Tokenomics:
e Total Supply: 1 billion $OZONE tokens

Token Utility Framework:

Core Staking Features:

e Multi-pool staking system (each pool has unique
APY, limits, and intervals).

e Supports staking of OZONE tokens.

e Automatic calculation of daily rewards based on
pool APY.

e Configurable claim interval (default: 15 days).

e Maximum reward cap (default: 300% of staked

amount).

Dual Reward System:

e Users can choose to receive rewards in:
o USDT (stable reward)
o OZONE (native token)
e Each pool can enable/disable OZONE rewards
individually.
e Dynamic conversion based on real-time ozone

price.

Reward Claim & Management:
e Claim rewards anytime after the claim interval.
e Supports manual or auto-claim during unstake.
e Tracks:

o Total rewards claimed.

YES,

smart

this is valid. The

contract owner
controls these functions,
so the owner must handle
the private key of the

wallet very

owner's
securely.
Because if the private key
is compromised, then it will

create problems.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

o Rewards claimed in USDT and OZONE
separately.
e Automatically checks the reserve balance before

paying rewards.

Auto Burn Mechanism:
e If total rewards reach the maximum cap (e.g.,
300%),
— Staked tokens are automatically burned to a
dead address.
e Reduces supply and maintains token value.

e Emits a detailed burn event for transparency.

Pool Management (Admin):

e Create, update, or deactivate staking pools.
e Set custom:
o APY, claim interval, min/max stake
o Max reward %, auto-burn flag, and reward
type allowance

e Fully modular — multiple active pools supported.

Reserves & Funding:
e Separate reserves for USDT and OZONE
rewards.
e The owner can:
o Fund or withdraw reserves.
o Track total distributed rewards and reserve
balances.

e Ensures proof-of-reserve-backed payouts.

Price & Conversion Control:

e The owner can manually set the OZONE price (1
USDT = N OZONE).

e Used for OZONE reward calculation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e Designed for future integration with on-chain

oracles.

ri f
e ReentrancyGuard — prevents double claim
attacks.
e Ownable — admin-only functions protected.
e Pausable — emergency pause for all operations.
e Emergency Withdraw — owner can recover

tokens when paused.

Transparency & Tracking:
e Complete pool & user stake history accessible
via view functions.

e On-chain events for all actions:
o Pool creation/update
o Stake, claim, unstake, burn
o Reserve funding & withdrawal

e Integrates with the OZONE Proof-of-Reserves

contract.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, the Customer’s solidity-based smart contract
is “Secured”. Also, these contracts contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We utilized various tools, including Slither, Solhint, and Remix IDE. This finding is also
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed, and applicable
vulnerabilities are presented in the Audit overview section. A general overview is
presented in the "AS-IS" section, and all identified issues are listed in the "Audit Overview"
section.

We found O critical, 1 high, 1 medium, 0 low, and 2 very low-level issues.

We confirm that all issues are acknowledged.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner-controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract The solidity version is not specified Passed
Programming The solidity version is too old Passed
Integer overflow/underflow Passed
Function input parameters lack a check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks an event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Moderated
Other programming issues Moderated
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. A smart contract contains Libraries, Smart

contracts, inheritance, and Interfaces. This is a compact and well-written smart contract.

The libraries in OZONE are part of its logical algorithm. A library is a different type of smart
contract that contains reusable code. Once deployed on the blockchain (only once), it is
assigned a specific address, and its properties/methods can be reused many times by
another contract in OZONE.

The OZONE team has not provided scenarios and unit test scripts, which would have

helped to determine the integrity of the code automatically.

The code sections are well-commented in the smart contract. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given an OZONE smart contract code in the form of a bscscan.com link. The
smart contract link is mentioned in the table above.

As mentioned above, the code parts are well commented, and the logic is
straightforward. Thus, it is easy to understand the programming flow and complex code
logic quickly. Comments are constructive in understanding the overall architecture of the

protocol.

Another source of information was its official Website: https://ozonex.tech and
Whitepaper: https://drive.google.com/file/d/1BnhideVxbn2RjL52P fHINFIMvbhC7TX/view,

which provided rich information about the project architecture.

Use of Dependencies

According to our observation, the libraries utilized in this smart contract infrastructure are

based on well-known industry-standard, open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x9316865b229045dca5ab5058059ca84a9fe23aa9#code
https://ozonex.tech
https://drive.google.com/file/d/1BnhideVxbn2RjL52P_fHJNFlMvbhC7TX/view

AS-IS overview

OzoneXStaking.sol

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | createPool external | access only Owner No Issue
3 | updatePool external | access only Owner No Issue
4 | deactivatePool external | access only Owner No Issue
5 | stake external Passed No Issue
6 [calculateAvailableRewards read Passed No Issue
7 | calculateRewardDistribution read Passed No Issue
8 | canClaim read Passed No Issue
9 | claimRewards external Passed No Issue
10 | claimRewardsWithType external Passed No Issue
11 | claimRewards internal Passed No Issue
12 | autoBurnTokens write Passed No Issue
13 | unstake external Lock period not Acknowledged

enforced properly
14 | fundUSDTReserves external | access only Owner No Issue
15 | fundOzoneReserves external [access only Owner No Issue
16 | withdrawUSDTReserves external | access only Owner No Issue
17 | withdrawOzoneReserves external | access only Owner No Issue
18 | setOzonePrice external | access only Owner No Issue
19 | getPool external Passed No Issue
20 | getUserStake external Passed No Issue
21 | getUserStakeCount external Passed No Issue
22 | getRewardBreakdown external Passed No Issue
23 | getStakingStats external Passed No Issue
24 | getOZONEProofOfReserves external | Variable Shadowing | Acknowledged

Warning

25 | getVersion external Passed No Issue
26 | getTotalActiveStakes external Passed No Issue
27 | pause external | access only Owner No Issue
28 | unpause external [access only Owner No Issue
29 | emergencyWithdrawUSDT external Emergency Acknowledged

withdrawals don't

update reserves
30 | emergencyWithdrawOZONE external Emergency Acknowledged

withdrawals don't

update reserves
31 [nonReentrant modifier Passed No Issue
32 | nonReentrantBefore write Passed No Issue
33 [nonReentrantAfter write Passed No Issue
34 | reentrancyGuardEntered internal Passed No Issue
35 | onlyOwner modifier Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

36 | owner read Passed No Issue
37 | checkOwner internal Passed No Issue
38 | renounceOwnership write access only Owner No Issue
39 | transferOwnership write access only Owner No Issue
40 | transferOwnership internal Passed No Issue
41 | whenNotPaused modifier Passed No Issue
42 | whenPaused modifier Passed No Issue
43 | paused read Passed No Issue
44 | requireNotPaused internal Passed No Issue
45 | requirePaused internal Passed No Issue
46 | pause internal Passed No Issue
47 | unpause internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss, etc.

High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g., public access to crucial.

Medium-level vulnerabilities are important to fix; however,
they can’t lead to tokens.

Low-level vulnerabilities are mostly related to outdated,
unused, etc., code snippets that can’'t have a significant
impact on execution.

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No critical-severity vulnerabilities were found

High Severity

(1) Lock period not enforced properly:

The Staking system design implies locked staking, but users can withdraw anytime.

This breaks the expected staking commitment.

Resolution: Implement a lock period per pool and block withdrawals prior to maturity.
Allow exit only after the lock ends or apply a penalty burn/fee.

Status: Acknowledged

Comments: Client will make sure that the unstake will not be executed from the UI.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Medium

(1) Emergency withdrawals don't update reserves:

B infinite gas

~ whenPaused { B infinite gas

The emergencyWithdrawUSDT() and emergencyWithdrawOZONE() functions transfer
tokens directly to the contract owner but do not update the corresponding internal reserve
variables (stakingUSDTReserves and ozoneReserves).

This creates a mismatch between the actual token balances and the contract’s internal

accounting.

For example:

If the contract holds 500 OZONE tokens and ozoneReserves records 200, and the owner
performs an emergency withdrawal of 400 OZONE, the contract will now hold only 100
tokens — but ozoneReserves will still incorrectly indicate 200.

As a result, subsequent reward claims or calculations that rely on reserve balances may

revert or produce incorrect values because the reserves no longer match actual liquidity.

Resolution: Subtract the withdrawn amount from the corresponding reserve variable
(stakingUSDTReserves or ozoneReserves) whenever an emergency withdrawal is

executed.

Add validation to ensure that the owner cannot withdraw more than the recorded reserve

balance.

Optionally, include a syncReserves() function that allows the contract to realign its internal

reserve variables with on-chain token balances after any manual intervention.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Comments: The owner will take care of this.

Low

No low-severity vulnerabilities were found

Very Low / Informational / Best practices:

(1) Unused variables:

There is a MAX_REWARD_PERCENTAGE variable defined, but not used anywhere.

Resolution: Remove unused variables from the code.
Status: Acknowledged

(2) Variable Shadowing Warning:

Warning: This declaration shadows an existing declaration.

A function parameter or local variable uses the same name as a state variable. This can
cause unexpected behavior or confusion in the contract.

Resolution: Rename either the state variable or the function return variable to avoid the

name conflict.
For example, use ozoneReservesLocal inside the function instead of ozoneReserves.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet private key were compromised, then it would create trouble. The following

are Admin functions:

OzoneXStaking.sol

createPool: Allows the owner to create a new staking pool with configurable APY,
limits, intervals, and dual reward options.

updatePool: Updates parameters of an existing pool (APY, limits, burn rules,
reward type) by the owner.

deactivatePool: Deactivates a pool, preventing new stakes while keeping existing
stakes intact by the owner.

fundUSDTReserves: Allows the owner to add USDT to the contract for future
staking rewards.

fundOzoneReserves: Allows the owner to add OZONE to the reward reserve
pool.

withdrawUSDTReserves: Allows the owner to withdraw available USDT reserves
from the contract.

withdrawOzoneReserves: Allows the owner to withdraw available OZONE
reserves from the contract.

setOzonePrice: Updates the OZONE token’s price used for USDT+—OZONE
reward conversions by the owner.

pause: Pauses all staking, claiming, and unstaking operations by the owner.
unpause: Resumes contract operations after being paused by the owner.
emergencyWithdrawUSDT: Allows the owner to withdraw USDT during an
emergency when paused.

emergencyWithdrawOZONE: Allows the owner to withdraw OZONE during an

emergency when paused.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a bscscan.com weblink. We have used all
possible tests based on the objects in the given file. During our analysis, we identified 1
high, 1 medium, and 2 informational severity issues in the smart contract. All identified
problems have been acknowledged. Therefore, we confirm that the smart contract has

been successfully reviewed and deployed on the mainnet.

Since possible test cases can be unlimited for such a smart contract protocol, we provide
no such guarantee of future outcomes. We have utilized the latest static analysis tools and
manual observations to cover as many test cases as possible, ensuring comprehensive

scanning of all relevant areas.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on the standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x9316865b229045dca5ab5058059ca84a9fe23aa9#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of the systems we review and
aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:

In reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We
also watch for areas where more defensive programming could reduce the risk of future
mistakes and speed up future audits. Although our primary focus is on the in-scope code,
we examine dependency code and behavior when it is relevant to a particular line of

investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and white
box penetration testing. We look at the project's website to get a high-level understanding
of the functionality of the software under review. We then meet with the developers to gain
an appreciation of their vision of the software. We install and use the relevant software,
exploring the user interactions and roles. While we do this, we brainstorm threat models
and attack surfaces. We read design documentation, review other audit results, search for
similar projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early, even if they are later shown not
to represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, and then confirming the issue through code
analysis, live experimentation, or automated tests. Code analysis is the most tentative, and
we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation are an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

The EtherAuthority team has analyzed this smart contract by the best industry practices as
of the date of this report, about cybersecurity vulnerabilities and issues in smart contract
source code, the details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended functions).

Because the total number of test cases is unlimited, the audit makes no statements or
warranties on the security of the code. It also cannot be considered a sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other
statements of the contract. While we have done our best to conduct the analysis and
produce this report, it is important to note that you should not rely on this report alone. We
also suggest conducting a bug bounty program to confirm this smart contract's high
security level.

Technical Disclaimer

A smart contract is deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have
vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit security
of the audited smart contract.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - OZONE

@ OzonexStaking

ReentrancyGuard
Ownable
Pausable

IERCZ20 ozoneToken

IERCZ0 usctToken
IDZOMEToken ozoneContract
uint256==Pool pools
address==null userStakes
uint256 totalPools

uint256 nextPoolld

uint256 stakingUSDTReserves
uint256 ozoneReserves
uint256 totalStakingDistributed
uint256 totalDzonebistributed
uint256 totalTokensBurned
uint256 activeStakeCount
uint256 MAX _REWNARD PERCENTAGE

wint256 DEFAULT_CLAIM_INTERW AL
uirt258 MOMNTH_DURATICN
uint256 ozonePrice

string YERSIOM

@ TERC20

0000000000000 0COQ0OOCN 0002000000 O|(000000000000000000

_ constructor__ ()
createPool()

updatePool()

deactivatePool()

stake()

Lealculate AvailableRewards()
QealculateRewardDistribution()
S canClaiml)

claimRewards()
claimRewardswWithType()
_claimRewards()
_autoBurnTokens()

unstake()
fundUSDTReserves()
fundOzoneReserves()
withdrawlUSDTReserves()
withdrawOzoneReserves()
setOzonePrice)

S getPool()

QgetUserStake()

S getUserStakeCourt()

S getRewardBreakdown()

O getStakingStats()

O getOZOMEProofOfReserves()
CQgetVersion()
QoetTotalActiveStakes()
pause)

unpause])
emergencyWWithdrawlUSDT()
emergencyWithdraw OZ0OMNE()

@ Ownablle

@ F‘;usable

Context

O address _owner

Context

O bool _paused

D _ constructor__ ()
2 Qowner()

& Q_checkOwner()

D renouncelwnership()
@ transferOwnership)
< _transferDwnership()

@ QtotalSupply()
@ QbalanceOf)
@ transfer()
@ Qallowance()
D approve()
D transferFrom()

A
<
,

@ IOZONEToken

@ QgetProofOfReserves()

@ ReentrancyGuard

uint256 NOT_EMTERED
uint256 ENTERED
uint256 _status

@ Qpaused])

“ Q,_requireNotPaused()
O, _requirePaused()

O _pausel)

< _unpausel)

T

=L,
rd

-,
| | %
@ Context

< Q_m=gSender()
< O,_msgData()
© O_contextSuffixLength()

¢EEe|0O0O

__constructor__{)
_nonReentrantBefore()
_nonReentrantAfter()

Q4 _reentrancyGuardEntered()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays
contract details, and provides an API for writing custom analyses. It helps developers
identify vulnerabilities, improve code comprehension, and quickly prototype custom
analyses. The study includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We analyzed the project together. Below are the results.

Slither Log >> OzoneXStaking.sol

INFO:Detectors:
OzoneXStaking.calculateAvailableRewards(address,uint256) (OzoneXStaking.sol#722-756) performs a
multiplication on the result of a division:

- daysElapsed = timeElapsed / 86400 (OzoneXStaking.sol#733)

- dailyReward = (userStake.originalAmount * pool.monthlyAPY) / 10000 / 30 (OzoneXStaking.sol#738)

- totalReward = dailyReward * daysElapsed (OzoneXStaking.sol#739)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
INFO:Detectors:
OzoneXStaking.calculateAvailableRewards(address,uint256) (OzoneXStaking.sol#/722-756) uses a
dangerous strict equality:

- daysElapsed == 0 (OzoneXStaking.sol#7/35)
Reference: https:/github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
INFO:Detectors:
Reentrancy in OzoneXStaking._claimRewards(uint256,0zoneXStaking.RewardType)
(OzoneXStaking.sol#810-862):

External calls:

- require(bool,string) (usdtToken.transfer(msg.sender,usdtAmount),USDT transfer failed)
(OzoneXStaking.sol#844)

State variables written after the call(s):

- ozoneReserves -= ozoneAmount (OzoneXStaking.sol#848)

OzoneXStaking.ozoneReserves (OzoneXStaking.sol#514) can be used in cross-function reentrancies:

- OzoneXStaking.fundOzoneReserves(uint256) (OzoneXStaking.sol#941-945)

- OzoneXStaking.getStakingStats() (OzoneXStaking.sol#1031-1054)

- OzoneXStaking.ozoneReserves (OzoneXStaking.sol#514)

- OzoneXStaking.withdrawOzoneReserves(uint256) (OzoneXStaking.sol#960-965)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities- 1
INFO:Detectors:
OzoneXStaking.getOZONEProofOfReserves() (OzoneXStaking.sol#1059-1061) ignores the return value by
ozoneContract.getProofOfReserves() (OzoneXStaking.sol#1060)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
Reentrancy in OzoneXStaking.fundUSDTReserves(uint256) (OzoneXStaking.sol#932-936):

External calls:

- require(bool,string) (usdtToken.transferFrom(msg.sender,address(this),_amount),USDT transfer failed)
(OzoneXStaking.sol#933)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

State variables written after the call(s):

- stakingUSDTReserves += _amount (OzoneXStaking.sol#934)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:

OzoneXStaking.getUserStake(address,uint256) (OzoneXStaking.sol#991-994) uses timestamp for
comparisons

Dangerous comparisons:

- require(bool,string)(_stakelndex < userStakes[_user].length,Invalid stake index)
(OzoneXStaking.sol#992)
OzoneXStaking.getRewardBreakdown(address,uint256,0zoneXStaking.RewardType)
(OzoneXStaking.sol#1006-1026) uses timestamp for comparisons

Dangerous comparisons:

- require(bool,string)(_stakelndex < userStakes[_user].length,Invalid stake index)
(OzoneXStaking.sol#1014)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
2 different versions of Solidity are used:
- Version constraint A0.8.20 is used by:

-A0.8.20 (OzoneXStaking.sol#14)

-A0.8.20 (OzoneXStaking.sol#46)

-A0.8.20 (OzoneXStaking.sol#148)

-N0.8.20 (OzoneXStaking.sol#345)

-N0.8.20 (OzoneXStaking.sol#434)

- Version constraint >=0.4.16 is used by:

->=0.4.16 (OzoneXStaking.sol#262)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
INFO:Detectors:
ReentrancyGuard._reentrancyGuardEntered() (OzoneXStaking.sol#425-427) is never used and should be
removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#fdead-code
INFO:Detectors:
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Parameter OzoneXStaking.emergencyWithdrawUSDT (uint256)._amount (OzoneXStaking.sol#1098) is not
in mixedCase
Parameter OzoneXStaking.emergencyWithdrawOZONE(uint256)._amount (OzoneXStaking.sol#1105) is not
in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Slither:OzoneXStaking.sol analyzed (7 contracts with 93 detectors), 76 result(s) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

OzoneXStaking.sol

Check-effects-interaction:

Potential violation of the Checks-Effects-Interaction pattern in
OzoneXStaking.withdrawOzoneReserves(uint256): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pos: 960:4:

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
hat means that a miner can "choose" the block.timestamp, to a certain degree, to change the

outcome of a transaction in the mined block.

Gas requirement of function OzoneXStaking.deactivatePool is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

Gas requirement of function OzoneXStaking.stake is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Gas requirement of function OzoneXStaking.fundOzoneReserves is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

Gas requirement of function OzoneXStaking.emergencyWithdrawOZONE is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 1105:4:

Similar variable names:
OzoneXStaking.createPool(string,uint256,uint256,uint256,uint256,uint256,bool,bool) : Variables

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

have very similar names "pools" and "poolld". Note: Modifiers are currently not considered by this
static analysis.
Pos: 625:25:

Guard conditions:
Use "assert(x)" if you never want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g., invalid input or a failing external component.

Division of integer values vields an integer value again. That means e.g., 10 / 100 = O instead of
0.1 since the result is an integer again. This does not hold for the division of (only) literal values
since those yield rational constants.

Pos: 772:26:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

OzoneXStaking.sol

Compiler version "0.8.20 does not satisfy the
requirement
Pos: 1:13
Compiler version 70.8.20 does not satisfy the
requirement
Pos: 1:147
Compiler version >=0.4.16 does not satisfy the
requirement

1:261
ompiler version "0.8.2 es not satisfy the

irement

1:433
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:567
Avoid making time-based decisions in your business logic
Pos: 16:788
The error message for require is too long
Pos: 13:818
Avoid making time-based decisions in your business logic
PO ¢
Avoid making time-based decisions in your business logic
Pos: 35:83
Possible reentrancy vulnerabilities. Avoid state changes
transfer.
13:847
ble reentrancy vulnerabilities. Avoid state changes

oS

ssi
ans

13:848

sible reentrancy vulnerabilities. Avoid state
nsfer.

9:853

g d
O O B

O
o B
n O n »

Software analysis result:
This software reported many false positive results, and some are informational issues. So,

those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

	Key Features:
	Core Staking Features:
	Dual Reward System:
	Reward Claim & Management:
	Auto Burn Mechanism:
	Pool Management (Admin):
	Reserves & Funding:
	Price & Conversion Control:
	Security & Safety:
	Transparency & Tracking:

